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I. Introduction 

 

In an average year, groundwater meets nearly half of California’s water demand 

and provides water to 80 percent of the state’s residents for drinking, domestic use, and 

irrigation (SWRCB 2012).  In southern California, groundwater provides 40 percent of 

the region’s freshwater supply (WRDSC 2011). Increased statewide monitoring efforts 

beginning in the 1950s have contributed to a growing awareness of the contamination of 

this underground resource with an ever-developing catalogue of pollutants. In Los 

Angeles, the aerospace industry and manufacturing boom of the 1950s contributed large 

quantities of chlorinated solvents into local aquifers. This class of synthetic contaminants 

has been linked to health effects ranging from organ damage to cancer (Moran et al. 

2007). 

Currently, groundwater is regulated by measuring the concentration of 

contaminants against health and environmental standards. This approach allows 

regulatory agencies to detect exceedances, but it is limited in its capacity to predict how 

much contaminant input will cause an exceedance. Surface water is inherently easier to 

monitor and regulate because it is more accessible and because the volume of surface 

water bodies is more easily measured. Section 303 (d) of the Clean Water Act introduced 

the regulatory approach of defining a Total Maximum Daily Load (TMDL) for surface 

water bodies. This approach involves defining the total mass flow of a contaminant that a 

given waterbody can accommodate without exceeding a specific concentration standard. 

The Los Angeles Regional Water Quality Control Board (LARWQCB) is interested in 

the possibility of applying a similar mass-based and waterbody-specific regulatory 

approach to groundwater. This would require a method of quantifying the total mass of a 

contaminant currently present in a given aquifer or groundwater basin from monitoring 

well concentration data. This report details a set of approaches and methods explored for 

determining the mass of a contaminant in a waterbody from concentration measurements 

at sampling wells. 

 The State Water Resources Control Board (SWRCB) is responsible for protecting 

the quality of both surface and groundwater in California. The LARWQCB is charged 

with advancing these goals with respect to local conditions in Los Angeles. The state’s 

current groundwater monitoring program, Groundwater Ambient Monitoring and 

Assessment (GAMA), was implemented in 2000. The Groundwater Quality Monitoring 

Act of 2001 (California Assembly Bill 599) updated the program and was passed with 

two primary goals: increased groundwater quality monitoring, and increased availability 

of monitoring data to the public. The public access component of GAMA is the 

GeoTracker database, which makes statewide groundwater quality data information 

available to the public as downloadable spreadsheets, reports, and an interactive map. 

Our client asked us to develop a method for quantifying the mass of a contaminant in a 

groundwater basin using the GeoTracker database. The initial study area was the West 

Coast Basin, a sub-basin of the Los Angeles Coastal Plains Basin, but the methodology 

was developed on a small case study in Torrance and then scaled up in a simplified form. 

 



II. Background 

Contaminant: Tetrachloroethene 

 

LARWQCB initially proposed the quantification of all volatile organic 

compounds (VOCs) present in the study area. Because of the focus on methodology, this 

set of compounds was scoped to just one VOC present in Los Angeles groundwater, 

tetrachloroethene (PCE).
1
 PCE is a chlorinated solvent and the parent compound of three 

degradation products: trichloroethylene (TCE), dichloroethylene (DCE), and vinyl 

chloride (ATSDR 1997).  Although TCE and vinyl chloride are both associated with 

greater health risks than PCE, we decided to consider the parent compound rather than 

the degradation products as it is a precursor for other compounds. 

PCE is an effective man-made chemical most commonly used in dry cleaners and 

metal degreasing.  Eighty percent of the dry cleaning industry relies on PCE because it is 

safe to use on fabrics while it effectively removes fats, oils and greases (USEPA, 1994).  

As an effective degreaser, many commercial and industrial companies also rely on PCE 

to degrease metal parts because it is noncorrosive. In the past, environmental laws were 

not as strict as they are today and dry cleaners, commercial and industrial companies 

were allowed to discard waste by pouring wastewater down sewers, into trashcans, and 

directly on the ground. The discarded waste eventually enters the water table and 

contaminates the groundwater. 

PCE’s high density causes it to sink when it infiltrates an aquifer. It can remain 

there for decades due to its low degradation rate in groundwater and its inability to 

evaporate (ATSDR 1997). At high concentrations following a large spill, PCE is 

generally a dense non-aqueous phase liquid; however, for this report it is assumed to be 

in the dissolved phase because there are no new PCE plumes in the study area and 

concentrations are low enough that non-aqueous phase is unlikely.  

The maximum contaminant level (MCL) for PCE in drinking water is 0.005 mg/L 

or 5 ppb to protect human health while considering the feasibility in cost and ability for 

public water systems to remove and treat PCE (USEPA 2012).  Exposure to water with 

PCE below the MCL has not been shown to cause acute health effects.  However 

exposure to PCE concentrations that exceed the MCL over many years have been linked 

to liver and kidney damage (ATSDR 1997).   Human exposure to PCE also occurs by 

inhalation.  Since PCE is volatile, PCE migrates from contaminated groundwater through 

the soil and into buildings.  Health effects associated with the inhalation of low 

concentrations of PCE includes dizziness and headaches while inhalation of high 

concentrations of PCE depresses the central nervous system (ATSDR 1997).  

 

 

 

 

                                                 
1
 Tetrachloroethene is the International Union of Pure and Applied Chemistry name for the compound, but 

it is also known as tetrachloroethylene and perchloroethylene, from which the acronym PCE is derived.  



Case Study Area: Torrance, CA 

 
Figure 1 Monitoring well network across the West Coast Basin. Case study area in Torrance, CA is 

highlighted in blue and shown in inset. 

 The client initially proposed quantifying mass for the entire Los Angeles Coastal 

Plains basin. This was scoped first to the West Coast Basin, a sub-basin of the Coastal 

Plains, and then to a case study area within the West Coast basin to allow for exploration 

of methodology with a smaller dataset (Figure 1). Narrowing the project to a case study 

enabled more detailed considerations of factors beyond the concentration data, such as 

local hydrology and contamination history. The case study area covers several city blocks 

in Torrance, CA. It contains ten contamination sites, including an aerospace company, 

gas stations, a dry cleaner, and an oil refinery (Table 1). 

 The city of Torrance has an abundance of private dry-cleaners, a large active oil 

refinery, and an industrial area. It was an important center of the aerospace industry 

beginning in the 1950s and many of the old and extant aerospace buildings are likely to 

contain masses of machinery where PCE is used extensively. Torrance is home to two 

superfund sites, the Del Amo Hazardous Waste Site and Montrose Chemical Corporation.  

There are four shallow aquifers in Torrance: Gage, Gardena, Lynwood, and 

Silverado. The Gardena and Gage aquifers lie adjacent to each other at depths of around 

200 feet. The Gage aquifer has a largely sand and gravel composition (Reichard et al. 

2003). The Gardena aquifer consists of coarse deposits.  



The Lynwood and Silverado Aquifers belong to the upper San Pedro aquifer 

system, and are at depths of approximately 400 feet. The Lynwood aquifer lies directly 

above the Silverado aquifer, and both contain sand and gravel similar to the Gage aquifer, 

but with marine deposits such as shell and wood fragments embedded as well as the 

common silt and clay embeddings that often come with sand and gravel  (Kirk 2006).  

 
Table 1 Global IDs, names, and addresses of the contamination sites in the Torrance case study area. 

Global ID Site Name Address 

SL0603776467 Boeing C-6 Facility 19503 S. Normandie Ave. Los Angeles 

SL184361419 Bee Chemical Co. (Former) 1500 178th St W. Gardena 
SL372452438 Mobil - Torrance Refinery 3700 W. 190th Street. Torrance, CA 
SLT43716714 Bushee Cleaners 2131 W. 182 ND Street. Torrance 
T0603701494 Mobil 18-D9E 18200 Crenshaw Blvd. Torrance 
T0603703643 Chevron #9-3874 (Former) 111 Victoria Street. Carson 

T0603704674 Mobil #18-MAP 20802 Vermont Ave S. Torrance 

T0603719669 Nissan North America, Inc. 125 Griffith. Carson 
T0603759521 Shell 911 Carson Street. W. Torrance 
T0603792935 Unocal #6075 1875 190th Street W. Torrance 

 

 

 

 
Figure 2 Wells in case study area. Wells sized according to measured PCE concentration.  



GeoTracker GAMA 

The GeoTracker database was designed to make statewide groundwater quality data 

accessible to the public. It coordinates data from different types of wells, such as drinking 

and monitoring wells, and different agencies across California. It has three major 

components: an online interactive mapping feature, downloadable water quality data with 

geographic coordinates, and downloadable reports from monitoring sites. This project 

relied on both the water quality data and the monitoring site reports. The interactive map 

feature was used to identify a suitable case study area, but it was not used to quantify 

mass.  

Water quality data can be limited by water basin, contaminant, and year of collection 

and then downloaded as an excel spreadsheet. The options for years of collection are past 

one, three, and ten years. Each well in the dataset is identified by geographic coordinates 

as well as a “Global ID” or “Well ID” (both names are used for the same ID in different 

contexts) that is specific to the monitoring site and a “Well Name” that is specific to the 

well within the site. The other columns in the dataset that were used for this project are 

“Date,” which indicates the date the sample was collected, and “Result,” which gives the 

detected concentration of the selected contaminant in the sample. The “Qualifier” column 

was also useful in identifying samples in which no concentration was detected. It shows 

“=” for detected concentrations, and “ND” for Non-Detect results where there was no 

contaminant detected. 

The interactive map reflects the data limiting (basin, contaminant, years), and 

displays monitoring locations as “clusters” of monitoring sites. Clicking on a cluster 

displays all the wells within the cluster. This cluster dataset can be downloaded to Excel, 

but the only concentration results included are the maximum detected concentration for 

each well. Each well has “Native Data” which leads to more detailed monitoring data for 

that specific well, which can be downloaded to Excel, and “View Graph,” which displays 

a plot of concentration over time for the selected contaminant. Clicking directly on a well 

name leads to the Analytical Results for that well, including all contaminants analyzed.  

Monitoring site reports are organized into seven tabs: Summary, Cleanup Action 

Report, Regulatory Activities, Environmental Data (ESI), Site Maps/Documents, 

Community Involvement, and Related Cases. The tabs used for this project are 

Environmental Data (ESI) and Site Maps/Documents. The ESI tab contains Individual 

Well Analytical Data, which includes the length of well screens, through which water 

enters the well, and depth to water data. Laboratory Analytical Reports (EDF) are also 

included under the ESI tab. This tab also contains individual monitoring well reports, 

which include the method detection limit, which was used to assign concentration values 

to Non-Detect results. 

Sampling and Analytical Chemistry 

 

Because GAMA coordinates data from different agencies across the state with 

different monitoring goals and different laboratory equipment and protocol, the 

uncertainty inherent in analytical chemistry is an important consideration in interpreting 

GeoTracker data. Samples are taken periodically from well locations by an agency and 

then analyzed in a laboratory separate from the collecting agency within several days of 



the sample collection date. All the wells in a given contamination site are sampled by the 

same agency and analyzed at the same laboratory, unless an agency switches to a new 

laboratory for analysis. Adjacent contamination sites, though, are often monitored by 

different agencies and samples analyzed in the same laboratory may be analyzed with 

different equipment or method.  

The goal of analytical chemistry is to identify unknown compounds in the sample 

and quantify the concentration of the compounds in the sample (Rong 2002). VOCs are 

separated, identified and quantified through a gas chromatograph and detector. Gas 

chromatography separates different types of volatile compounds to their molecular level 

based on their retention time, which is the time it takes for the compound to be detected 

after it has been injected.  On the other hand, detectors including flame ionization 

detectors, photo ionization detectors and mass spectrometers are used to identify and 

measure the quantity of the compound in the sample (Rong 2002). The certainty and the 

meaning of the results are particular to both the instrument and the method used to 

analyze each sample. In a contaminated area, the concentration of a contaminant is very 

rarely absolute zero, but many samples return a result of non-detect. A non-detect result 

does not mean that the contaminant being analyzed is absent, but rather that its 

concentration is below the Method Detection Limit (MDL). In this project, an 

understanding of the uncertainties of analytical chemistry and MDLs were important in 

assigning concentration values to samples in which no PCE was detected.  

Interpolation by Kriging: Conceptual and Mathematical Foundations 

Groundwater quality is monitored in terms of the concentration at discrete 

measuring points. Interpolation between these points yields a continuous surface of 

concentration predictions over an area. Within Geographic Information System (GIS) 

software, there are several available interpolation models; these fall into the two broad 

categories of deterministic and geostatistical interpolation (ESRI 2008). Inverse Distance 

Weighting (IDW) is a deterministic interpolation method resting on the principle that 

points near one another are similar. Each prediction point uses a weighted average of the 

points around it. The weight for each known point is based on the inverse of its distance 

from the prediction point, meaning that known points influence a prediction more 

strongly when they are closer to the prediction point (ESRI 2008).   

Geostatistical interpolation is similar to the deterministic IDW method in that it 

assumes points close to one another are similar, but it uses geostatistics to determine the 

weighting of measured points in predictions. The family of geostatistical interpolation 

methods is also called kriging and was developed for ore reserve estimation in the mining 

industry, although it now has many other applications. Kriging produces an uncertainty 

surface in addition to a prediction surface by incorporating geostatistics and considering 

the entire spatial distribution around prediction points (ESRI 2008; Cameron and Hunter 

2002). Both kriging and IDW have been used extensively in modeling groundwater 

parameters (Rejith et al. 2009; Machiwal et al. 2011; Nas & Berktay, 2010; Jang et al, 

2012). 

Within the family of kriging there are several different models including simple 

kriging, ordinary kriging, cokriging, universal, and multivariate indicator kriging 

(MVIK). The choice between these models depends on the dataset and the context of the 

project. MVIK is often useful in modeling water quality data because it predicts the 



probability of exceeding a certain value; this prediction can be used to predict the 

likelihood of exceeding regulatory or health-based standards for water quality. For this 

project, though, MVIK was inappropriate because mass prediction requires an estimate of 

the concentration across a surface, not an estimate of how many points exceed 

concentration-based standards. Cokriging enables the simultaneous interpolation of 

multiple parameters. This technique was considered but not fully explored for this 

project. Ordinary kriging was selected as the most appropriate technique based on the 

data and the intended output.  

Ordinary kriging is the most flexible type of kriging because, unlike simple 

kriging, it does not assume that there is a known mean to the dataset. Ordinary kriging 

does assume a fixed mean for the entire dataset, but it does not assume that this mean is 

known (ESRI 2013). Ordinary kriging relies on the mathematical concepts of variance 

and covariance. Variance and covariance are inverses of each other and are therefore 

practically equivalent; this project used only variance. The mathematical model used in 

ordinary kriging to assign weights to measured points in predictions is the variogram: a 

plot of variance as a function of the separation distance between points (Figure 3). All 

possible pairs of points in the dataset are grouped into intervals (called lags) by the 

separation distance between the two points in the pair. The variance between the two 

points is the dependent variable. The lag size and the number of lags in the variogram 

depend on how regularly and how densely spaced the measured points are. If the points 

are distributed on a grid, then pairs of points can be grouped into narrow lags with a 

specific separation distance. However, if points are unevenly distributed, each separation 

distance may be unique and pairs of points need to be grouped into intervals of separation 

distances. If points are very densely arranged, the model can have more lags because 

there are many unique separation distances. However, if the points are sparse, they must 

be grouped into fewer lags.  

 
Figure 3 Model variogram showing the key parameters: range, sill, and nugget. 

By convention, the variogram is often replaced by the semivariogram, which is 

simply the variogram with all the variance values divided in half. The key parameters of 

the variogram are the partial sill, the major range, and the nugget (Figure 3). The sill is 

the maximum variance between pairs of points in the dataset; visually it is the value at 
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which the variogram levels off. Beyond a certain distance variance ceases to increase. 

The range is the separation distance at which the sill is reached. The nugget is the 

variance at very close or coincident points; graphically it is the y intercept.    

III. Methodology 

Development of Conceptual Model 

Initially the conceptual model focused heavily on factors affecting the distribution 

and volume of water of the shallow aquifer.  These factors included precipitation, pump 

and recharge rates, local aquifer structure, and contamination and cleanup history (Figure 

4). Some of this data was difficult to find at the local scale and there was not time to 

incorporate these factors into the final conceptual model.  Furthermore, the intent was to 

create a model reliant only on data available through the GeoTracker database.

 
Figure 4 An early version of the conceptual model for this project. Several of the parameters shown here 

were determined to be irrelevant or beyond the scope of the project. 



The final methodology for the case study area is summarized in Figure 5. 

 
Figure 5 Model of specific methodology for this project, including case study. 



 

 
Figure 6 Conceptual Model for kriging mass using data from GeoTracker database. 

The simplified conceptual model shown in Figure 6 outlines the process of obtaining a 

mass estimate for a contaminant across a groundwater basin in GeoTracker. This model 

assumes that the contaminant of interest is already known, the scale of the desired 

prediction is an entire groundwater basin, and the only data source is the GeoTracker 

database. The steps represented in the model are elaborated in the following section.   

Limiting and Formatting Data 

The GeoTracker database limits data according to the following categories: (1) 

well type, including Environmental Monitoring Wells and Supply Wells; (2) geographic 

extent, defined by Counties, Groundwater Basins, Regional Board Boundaries, Assembly 

Districts, Senate Districts, Hydrogeologic Vulnerable Areas, and GAMA Study Areas; 

(3) contaminant, grouped by Wells With Results, All Wells That Have Been Sampled, or 



Wells With Results Above Comparison Concentration; and (3) date range. This project 

considered data from all available well types. The geographic extent was limited by the 

category of “Groundwater Basin” to “COASTAL PLAIN OF LOS ANGELES – WEST 

COAST.” In terms of contaminant, the dataset was limited to wells with any result for 

PCE (the option in the dropdown menu in GeoTracker is “Wells With Results” as 

opposed to ) groups data into categories of the past one, three, and ten years. Originally, 

we proposed to limit the data to the most recent year available, 2012, and average all 

measurements during this year. The date range was expanded to the past three years 

because some wells had sparse or missing PCE data for 2012 and excluding earlier years 

would have limited the number of data points available. Furthermore, uncertainties in 

analytical chemistry can cause anomalous results that may be corrected by averaging 

(Figure 7). PCE has a half-life of about one to two years in groundwater or longer under 

certain conditions, so in the absence of remediation efforts concentration does not fall 

rapidly (SWRCB 2009). Still, the assumption of no degradation is not valid. The ten-year 

average was rejected because remediation efforts in combination with natural degradation 

have significantly reduced the concentration at some contamination sites and using a ten-

year average would therefore overestimate current contamination levels (Figure 8). Using 

a three year average is not ideal, but it limits the uncertainty and the data lost by 

considering only one year of measurements as well as avoiding some of the 

overestimation resulting from assuming a constant concentration over ten years. 

 
Figure 7 Measured PCE concentrations in MW-10A of the Honeywell Aerospace contamination site from 

2005 to 2010, showing anomalous spikes and dips in concentration measurements. 



After limiting and downloading concentration data through the GeoTracker 

interface, the dataset was formatted further according to the specific goals of this project. 

As discussed in the background section, a consideration of analytical chemistry 

techniques was essential to the interpretation of non-detect results. Each instrument and 

analytical method has a different Method Detection Limit (MDL), described as “the 

minimum result which can be reliably discriminated from a blank (for example, with a 

99% confidence level) (Federal Advisory Committee, 2007).” Out of the many detection 

limits included in monitoring reports, such as Reporting Limit and Practical Quantitation 

Limit, MDL is the relevant measure because it describes the limits of the analytical 

instrument and method.  

In the Torrance case study area and in the West Coast Basin, a majority of 

concentration values were reported as non-detect. Several treatments of non-detect values 

were considered. The option of discarding all non-detect values in the dataset was 

rejected because it would have left too few points in the dataset. The GeoTracker 

database assigns a zero value to non-detect measurements. This assumption would likely 

lead to an underestimation of the total amount of PCE in the groundwater because in an 

area contaminated with PCE, it is unlikely that a non-detect result actually represents a 

concentration of zero. It is more likely that the concentration is simply too low to be 

detected by the instrument and method used in analysis. As a compromise, non-detect 

measurements were assigned a concentration equal to half the MDL. This approach is 

based on the EPA’s non-detection policy elaborated for Region 3 (Mid-Atlantic) 

groundwater quality risk assessment (USEPA 1991).The MDLs in the Torrance case 

study area ranged from 0.14 µg/L to 130 µg/L; the large range means that using half the 

MDL is not ideal. For instance, a non-detect measurement with an MDL of 130 µg/L 

would be assigned a concentration result of 65 µg/L, which is thirteen times higher than 

the Maximum Contaminant Level and also higher than the concentrations of many of the 

samples with detected concentrations.  

 MDLs are not currently part of the downloadable data available through 

GeoTracker. The MDL for each measurement was found in quarterly monitoring reports, 

in the ESI tab of site reports. A final possibility for treating non-detect values, which 

circumvents the inconvenience of manually inputting MDLs, is to assign a uniform value 

to all non-detect measurements. For the West Coast Basin it was impractical to look up 

the MDL for each measurement, so a result equal to half of the lowest MDL in the dataset 

was assigned to all non-detect results. 

 Another piece of data that was manually obtained and joined to the downloaded 

dataset was well screen length. As will be discussed later in the methodology, well screen 

length was used in the case study area as a surrogate for the depth across which PCE is 

distributed. Well screen length data is available in the ESI tab, but the data for many 

wells have not been entered and had to be determined from well bore diagrams available 

in the Site Maps/Documents tab.  

Joining data for wells from different datasets requires some unique identifier for 

each well. The combination of latitude and longitude uniquely identifies a monitoring 

location, but it is inconveniently long when put into one column together. Wells are also 

assigned IDs within GeoTracker, but neither of the two types of ID uniquely identifies a 

well. The first, called alternately a “Global ID” or a “Well ID” depending on the context, 

identifies the contamination site. Within contamination sites, individual wells are 



distinguished by the “Well Name.” Well Names are not unique to wells either, because 

there may be wells with the same Well Name in different contamination site. A new field 

was added to the dataset called “UNIQID,” which is a concatenation of the Global ID and 

the Well Name. 

 
Figure 8 Measured PCE concentrations in MW-2B of the Honeywell Aerospace contamination site from 

2005 to 2010, showing the natural degradation of PCE over time. 

Kriging Concentration  

 Kriging was ultimately performed in ArcGIS, but it was also explored in R. 

Ordinary kriging was used because there is not a known mean to the data. The major 

steps in ordinary kriging are: (1) exploring the data for transformations and trend, (2) 

constructing the empirical Semivariogram, (3) fitting the model semivariogram, and (4) 

defining the search neighborhood. The kriging model is checked at two stages: cross 

validation assesses the fit of the data to the model semivariogram. Validation analysis 

compares values predicted by kriging to measured values.  The kriging methodology in R 

was explored based on a series of guides and tutorials created by Nicholas Christou and 

available at http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/. This methodology 

was only taken to the step of fitting the model semivariogram because the techniques 

elaborated through Christou’s tutorials only allow a global search neighborhood, which 

was not suitable for the dataset. Data exploration in R informed the data exploration that 

was part of the kriging process within ArcGIS.  

 

1. Exploring Data for Transformations and Trend 



 The first step in kriging is to explore the dataset to determine any data 

transformations and trend removal that should be applied. Since kriging works best for 

normally distributed data, data transformations can improve the fit of the model. The 

transformations available in ArcGIS are box-cox, arcsine, and log.  The concentration 

data in both the case study area and the West Coast Basin are highly skew toward low 

concentrations (Figure 9).  A log transformation yields a distribution closer to normal, but 

it is still skew. This suggests that a robust estimator will be more effective than a classical 

because the robust estimator is better able to accommodate extreme values. Estimator 

type, which is a parameter in fitting a model semivariogram, is not part of the ArcGIS 

interface, but it is in R.  

 

 

 
Figure 9 (Clockwise from upper left) PCE concentration in the case study area; log-transformed PCE 

concentration in the case study area; PCE Concentration in the West Coast Basin; log-transformed PCE 

Concentration in the West Coast Basin. 

  

Another aspect of the data to explore is the presence of directional trend. Trend 

analysis is possible in R and ArcGIS and was performed in both. Trend should not be 

removed unless there is a real-world basis to explain why the data has a certain pattern 

along a direction. For instance, if there were a strong directional flow of groundwater 

across the dataset, this would be a reasonable justification for trend removal. There is, 

however, no strong directional flow across the West Coast Basin, or even across most 



individual contamination sites. Some site reports in GeoTracker included rose diagrams 

for groundwater flow direction, and none showed a strong and constant flow in one 

direction.  

The Trend Analysis tool in ArcGIS can help determine if a trend exists in the 

data. The shape of the green and blue curve through the projected plane indicates if a 

trend exists.  A flat curve means that no trend exists while a U-shaped curve indicates 

that there is a second order trend. If a trend exists, one can decide to accept the trend or 

remove the trend during kriging. 

 

 
Figure 10 Trend analysis tool in ArcGIS, showing the trend in well screen length data. 

 

 

 

 

 

 

 

 

 

 



2. Constructing the Empirical Semivariogram: Lags, Directionality, and Outliers 

  
Figure 11 Four plots of the same semivariogram, with varying maximum distance and lag size in R. Points 

represent average semivariance of each lag.  

 Before constructing a model semivariogram, it is necessary to construct the 

empirical semivariogram by varying the size and number of lags as well as the direction 

of variance (for a review of lags, see background section). In R, the size of lags and the 

maximum separation distance are varied; in ArcGIS, the size and number of lags are 

varied. To convert between maximum separation distance and number of lags, divide by 

lag size. The effects of varying the size of lags and the maximum separation distance can 

be seen in Figure 11.  

 The other factor in constructing an empirical semivariogram is directionality. 

Variograms can be omnidirectional, grouping point pairs only by the separation between 

them, or directional. A directional variogram considers only point pairs along a certain 

axis (with a defined angular tolerance). The data for this project was not directional, so an 

omnidirectional variogram was used.   

 ArcGIS uses slightly different equations to construct the empirical semivariogram 

than R, so the parameters cannot be translated between the two programs. In ArcGIS 

there are two steps that deal with constructing the empirical semivariogram. First, in 



Geostatistical Analyst’s Data Exploration functions, there is a semivariogram tool (Figure 

12).  

 

 
Figure 12 Empirical semivariogram for PCE concentration in the West Coast Basin, ArcGIS Geostatistical 

Analyst, Data Exploration, Semivariogram tool. 

Second, there is a step in kriging through Geostatistical Wizard where the lag size and 

number are set, which shows a different form of the semivariogram, with both binned and 

averaged variances for each lag size (Figure 15). The maximum distance should be 

reflective of the maximum physical separation of two points for which the points can 

reasonably be expected to be related. 

 A final consideration in constructing the empirical semivariogram is the presence 

of extreme values in the dataset. These values are not outliers because they are not due to 

errors in measurement, but represent real measured values. One way to deal with the error 

these values introduce into the model is to exclude them from the data while the model is 

developed, but add them back in for the predictions (Krause 2012). In the case study area 

there is one site with PCE concentrations far higher than all the other sites. This site was 

excluded from the dataset during model semivariogram development (Figure 13).  An 

extreme value near zero separation distance is still visible; this was also excluded from 

the dataset during model development (Figure 13).  



 

 
Figure 13 Top: semivariogram for PCE concentration in case study area with site of extreme values 

excluded. Bottom: semivariogram for PCE concentration in case study area with site of extreme values 

excluded and an additional extreme value near zero separation distance excluded. 

 

3. Fitting a Model Semivariogram and Cross Validation 

 

In fitting a model to the empirical semivariogram, the first choice to be made is the model 

type. Variogram types available in ArcGIS are: stable, exponential, Gaussian, spherical, 

circular, tetraspherical, pentaspherical, J-Bessel, K-Bessel, and Hole Effect. The most 

common model types are Gaussian, spherical, and exponential. The type of model can be 

guessed visually and then checked via cross validation. Both ArcGIS and R have 

optimization functions to determine the best-fit parameters for a given variogram model. 

In R, the function variofit puts initial parameters, estimated by eye, through a loss 

function, which is optimized to obtain the parameters for the model semivariogram. In 

addition to the model semivariogram, the weighting type must be defined before 

optimization. The three types of weighting are Cressie, Equal, and Npairs. Npairs is the 

default for the variofit function. 

 

 

 



Table 1. Loss function values for different model types (Gaussian, Exponential, Spherical) and weights 

(Cressie, Equal, Npairs) applied to the PCE concentration data in the case study area. 

 

 

 

Cressie Equal Npairs 

Gaussian 67.4935204423278 0.557370025158011 770.230099026166 

Exponential 718.794718484257 2.70781599637019 6131.32826941955 

Spherical 972.208781908626 2.44126260304492 7938.48323426944 

 

 

 

  
Figure 14 Binned omnidirectional empirical semivariogram with log transformation, bin size of 0.01 and 

bin number of 8, robust estimator (left). Empirical semivariogram with model semivariogram obtained via 

the variofit function in R.  

 

 

Table 2. Parameters from variofit function in R, using Gaussian model and equal 

weights. 

 
Parameter Value 

Lag Size 0.01 

Number of Lags (max.dist/lag size) 8 

Nugget 1.2 

Partial Sill 5 

Range 0.05 

Kappa (smoothing) 0.5 

 



 
Figure 15 Empirical semivariogram (binned variance shown as red dots, averaged variance shown as blue 

crosses) and model semivariogram with parameters taken from best-fit model determined in R by the 

variofit function. Due to slight differences in the empirical and model equations, the semivariograms do not 

match despite the shared parameters. 

 

 
Figure 16 Empirical semivariogram (binned variance shown as red dots, averaged variance shown as blue 

crosses) and model semivariogram with parameters optimized in ArcGIS for a Gaussian variogram model. 

The major difference between this semivariogram and the one in Figure 12 is the maximum distance, which 

is an order of magnitude greater.  

 

4. Defining the Search Neighborhood 

 

The final step in generating a kriged prediction surface is defining the search 

neighborhood. This limits the radius and number of points that influence each prediction 



point. The major and minor semi-axes define the vertical and horizontal reach of the 

search area. This step was not performed in R but it would be possible in future projects. 

The default in ArcGIS is for these parameters to be copied from the variogram, but they 

can also be set manually. If there is no directionality in the data, the search neighborhood 

should be circular and the major and minor semi-axes should be equal. For this project 

both axes were fixed at 0.0025.  Within the search neighborhood, the minimum and 

maximum number of neighbors must also be set. For this project, the minimum number 

of neighbors was set to 0; this means that outside the search neighborhood radius from 

measured points, no concentration is predicted. Finally, the type of neighborhood—

standard or smooth--also affects the radius and the predictions. A smooth neighborhood 

is better for data with lots of variation in values close to one another, which made it more 

appropriate for this project. Within the smooth neighborhood, a smoothing factor must be 

set between 0 and 1. The higher the smoothing factor, the larger the search radius. For 

this project, it was set at 0.4.  

 

Validation Analysis 

Due to time and data constraints, validation analysis was not performed. 

Validation analysis required subsetting data into test and training points. The data was not 

dense enough to accommodate the exclusion of training points. When the data for the 

West Coast Basin was randomly subsetted and then kriged, entire contamination sites 

were predicted to have zero PCE concentration because there were so few points in the 

site that they were all excluded randomly from the dataset. If future projects are able to 

more fully develop an effective kriging model, validation analysis will be essential to 

determining the confidence in predictions.  

 

Integration in ArcGIS 

The predicted concentration layer of PCE was integrated over the volume of water 

to obtain the mass of PCE. The concentration surface is two-dimensional and was 

assumed to be fixed over a given depth; variations in concentration with depth were not 

considered. To calculate the volume of water in the study area, the prediction cell area, 

depth, and porosity of aquifer media were multiplied according to the following equation:  

 

Volume = Cell Area (m
2
)* Depth (ft.) * Porosity of aquifer media * Conversion 

factors.   

 

The cell area refers to the area of the output cells of the raster used to sum mass. 

Because the cell area listed in the raster properties is in units of projected coordinates, the 

ruler tool was used to measure the area of cells. Some variation in the measurements was 

accounted for by averaging five measurements, which yielded a cell area of 334.528495 

m
2
. 

Defining the depth of the saturated zone across which PCE is distributed is 

difficult because local hydrology, rate of pumping and recharge of groundwater, the 

sinking rate, and the residence time in the aquifer all affect the depth distribution of a 

contaminant. The initial assumption that monitoring well screens covered 80 – 90% of 

the saturated zone and that PCE was approximately uniformly distributed across the 



saturated zone was rejected. Two definitions of depth were used during volume 

integration. First, the well screen length was assumed to be an approximate measure of 

the depth across which contaminants can be expected to be distributed. The function of 

well screens is to keep sand the neighboring media like sand and gravel from collapsing 

into the borehole, and it also supports the borehole walls and allows water to flow into 

the well (Brush 1971). The well screen lengths in the case study area ranged from five 

feet to 96.04 feet, but the majority were either 20 or 30 feet long (Figure 17).  

 

 
Figure 17 Well Screen Length data for the Torrance case study area. 

Well screen length was interpolated by ordinary kriging (Figure 18). The concentration 

raster and depth raster were multiplied together along with cell area, porosity, and 

conversion factors to predict mass.  

To determine which kriging methods was the most appropriate for the 

interpolation of groundwater depth, three kriging methods were used to produce a 

continuous depth profile for the aquifer:  Simple, Ordinary and Universal.  Different 

assumptions of the groundwater depth are made for each of the kriging. Interpolating 

groundwater depth by simple or ordinary kriging, assumes that the groundwater depth is a 

stationary variable. On the other hand, universal kriging assumes that a trend exists in the 

varying depths.  Since we were unsure as to what kriging model fits well to the length of 



well screen data, we decided to perform a test for each kriging model while adjusting the 

parameters.   

After interpolating the well screen length by all three kriging models, the most 

suitable kriging model was determined by cross validation.  In cross validation, four 

statistics were evaluated for each kriging method.  These statistics are standardized mean, 

root mean squared (RMS), root mean squared standardized (RMSS), average standard 

error and standardized mean.  The most suitable model should have a standardized mean 

closest to 0, a smallest RMS value, an average standardized error that is close to the RMS 

prediction error and a RMS standardized value close to 1.  Models that produce a RMS 

that is close to the average standard error is preferred more than the model that has a 

lower average standard error and a lower RMS.   

 Based on these statistics, simple kriging seems to be the most suitable model as it 

has the smallest RMS value, a RMS standardized error close to 1 and an average 

standardized error that is close to the root mean square. It requires a fixed and known 

mean, though, so ordinary kriging was selected because it does not require a known mean 

and its standardized mean error was closest to 0. 

 
Table 2 Summary of cross validation error statistics for different kriging methods on well screen length 

with parameters automatically calculated in ArcGIS. 

 Simple Kriging Ordinary Kriging Universal Kriging  

Root-mean-square 11.43666 12.62842 13.24804 

Standardized mean -0.009752081 0.004051191 0.02345767 

Root-mean-square standardized 0.9909258 1.505904 1.511183 

Average standard error 11.40605 7.70138 30.8332 

     

 
Figure 18 Monitoring well screen length predicted by ordinary kriging in case study area. Well screen 

length was used as a surrogate for the depth across which most PCE is concentrated in the aquifer. 

Monitoring wells are shown in black. 



      A second model for estimating the volume assumed that the depth across which 

PCE was approximately uniformly distributed was fixed at twenty feet. In this scenario, 

the kriged concentration surface was multiplied by porosity, cell area conversion factors, 

and a fixed depth value of 20 feet.  

Porosity is included in the volume calculation because this project considered 

only contaminants in groundwater, not those sorbed to soil. Furthermore, concentration 

measurements are of contaminants present in groundwater, not in soil. Multiplying the 

volume of the aquifer by porosity gives the volume of water as opposed to the volume of 

water and soil combined. In the Site Maps/Documents tab, each well has a Geobore 

diagram (although many are missing) that includes verbal descriptions of the aquifer soil 

media at different depths for each well. The soil media are classified according to the 

Unified Soil Classification System (USCS), which classifies soil based on the media’s 

texture and grain size (Stevens 1982). Porosity was initially assumed to be fixed at thirty 

percent, an assumption which was supported by a closer analysis of the aquifer media 

profiles available through GeoTracker. We compiled an Excel spreadsheet showing the 

depth media profile of each well represented as one foot intervals, with each interval 

assigned a USCS symbol to match the media type (Figure 19). A literature review was 

conducted to assign each USCS symbol a numeric porosity value (Morris 1967). After 

comparing the porosities of different media types present in the case study area, we 

concluded that the initial assumption of 30 percent porosity was reasonable (Table 3). 

 

 

 
Figure 19 Aquifer media profiles of four wells in the case study area. 

 



Table 3 Soil type and corresponding porosity values assigned according to Morris 1967. 

Symbol Soil Type Porosity Values (%) 

SM Silty sand 29-49 

SP Poorly-graded sand 31-46 

SP-SM Silty sand/ Poorly-graded sand 26-46 

SW Well-graded sand, fine to coarse sand 31-46 

CL Clay 34-57 

ML Silt 34-61 

SC Clayey sand 26-53 

SM/ML Silty sand/ silt 34-49 

IV. Results 

PCE concentration was predicted in the case study area by ordinary kriging (Figure 

20) and inverse distance weighting (Figure 21) in ArcGIS. The prediction surfaces are 

similar. The surface produced by ordinary kriging is preferable because it does not 

suggest that monitoring wells are sources of contamination. In the IDW prediction 

surface, high concentrations are predicted around wells with high measured 

concentrations and then fall off in a circle around individual wells. The parameters for 
the ordinary kriging were, as follows:  

 log transformation 

 smooth search neighborhood with a smoothing factor of 0.4 

 major and minor semi-axes = 0.025 

 number of lags = 13 

 lag size = 9 x 10-5 

 nugget = 1.6463277694940552 

 measurement error = 100% 

 model type = stable 

 range = 0.00024177790776960882 

 sill = 0.9703698926393521 



 

 
Figure 20 PCE concentration predicted by ordinary kriging in case study area. Monitoring wells are shown 

in black and sized proportionally to measured concentration. 

 
Figure 21 PCE concentration predicted by inverse distance weighting in case study area. Monitoring wells 

are shown in black and sized proportionally to measured concentration. 



 In the case study area, depth was estimated in two ways: first it was assumed that 

well screen length was a reasonable surrogate for depth and well screen length was 

predicted by ordinary kriging across the study area (Figure 18); second, a fixed depth of 

twenty feet was assumed. Mass was calculated and summed for the case study area 
according to the following equation:  
 
Mass = concentration * depth (ft) * 1000 * 334.528495(m2) * 0.3048 (m/ft) * 
porosity.  
 
When the kriged well screen length was used to define volume, the sum of mass 
predictions was 1014 kilograms. When depth was assumed to be fixed at 20 feet, the 
sum of mass predictions was 900 kg.  

Concentration in the West Coast Basin was predicted by ordinary kriging (Figure 

22). Depth was assumed to be fixed at 20 feet. There was not time to collect all the well 

screen length data for kriging, so depth was assumed to be fixed at twenty feet. The 

summed mass prediction for the West Coast Basin was 4383 kg. 

 
Figure 22 PCE concentration predicted by ordinary kriging in the West Coast Basin. Wells are shown in 

black. 

 

 

 



V.Discussion  

 Sources of Uncertainty 

 The mass predictions from this methodology are approximate and likely 

overestimate the total mass. Kriging concentration introduces uncertainty because the 

kriging model is not ideal for the GeoTracker data. Kriging is ideal for densely 

distributed data on a grid. The monitoring well network supplying data to the GeoTracker 

database, on the other hand, is concentrated only in areas where there are known 

contamination sites. Wells are distributed in clusters and many sites have five or fewer 

monitoring wells; the sparseness and the distribution pattern of monitoring wells limit the 

accuracy of interpolation models (not just kriging).  

 The treatment of non-detect values using MDLs should be developed further. As 

discussed in the methodology section, MDLs in the case study area varied from 0.14 to 

130 μg/L. A majority of the detected concentrations (66 of 114) were below 65 μg/L , 

which is the value assigned to the non-detect measurement with an MDL of 130 μg/L. 

Helsel (2005) provides a discussion of alternate methods for treating non-detect data.  

Another limitation is that the data in GeoTracker does not distinguish between 

samples taken from physically distinct aquifers. Limiting the search neighborhood to 

local rather than global helps mediate this problem, but it cannot account for physical 

barriers in aquifer structure between monitoring points that are within each other’s search 

neighborhood. Because kriging, like any interpolation model, assumes that all points in a 

search neighborhood are related, if two points that are close to one another are in fact 

separated in two distinct aquifers, assuming their values affect one another is incorrect. 

Some way of grouping the GeoTracker data into distinct aquifers and then kriging 

aquifers individually would help resolve this problem.  

Another generalization in the model is that concentration is vertically uniform; the 

GeoTracker data does not show the changing distribution of a contaminant with depth. 

Several wells do have sampling points at several depths, but a great majority of the wells 

do not. In the Torrance case study area there were only two wells that had measurements 

at multiple depths. This inability to account for variations in concentration with depth 

introduces huge uncertainty because it assumes that whatever concentration was 

measured at the sampling point is uniform for the entire assumed depth either fixed (20 

feet in this study) or modeled (kriging well screen length). One possible approach to 

accounting for variations in concentration with depth would be to assume a normal 

distribution around the sampling point. Another would be to conduct a study of all the 

wells in a larger study area that have measurements at multiple depths and construct a 

characteristic mass distribution curve over depth and apply this curve to all the single 

measured concentration points.  

A case study considering the vertical distribution of PCE would also inform a 

more accurate estimate of depth for the volume integration step. Both the assumption of 

twenty feet and the assumption of interpolated well screen length as an approximation of 

contaminant distribution introduce uncertainty into the model. Both of these 

approximations are based on the assumption that well screen length is somehow 

reflective of the depth over which PCE is distributed. This makes sense intuitively 

because wells are designed to monitor contaminants and are therefore placed in parts of 



the aquifer where contaminants are likely to be found; however, a review of the literature 

on sinking and dissolution of PCE may yield a more suitable means of modeling depth.  

Recommendations and Considerations for Large-Scale Implementation 

The methodology developed at the case study level included two components that 

were impractical to scale up to the basin-wide level: the well screen length and the MDLs 

had to be obtained individually and manually joined to the concentration data 

downloaded from GeoTracker. Much of the well screen length data was missing entirely 

or had to be looked up in geobore diagrams. MDL data was grouped into quarterly 

monitoring reports and the team had to sort through a whole series of reports in each 

quarter to find the relevant measurements. If the MDL and well screen length 

components of the methodology are included in future conceptual models, the procedure 

would be streamlined by the inclusion of this data in the downloadable spreadsheet. 

MDLs, or some other relevant detection limit will most likely be key to any mass 

prediction model.  

Despite the uncertainties and challenges outlined above, we believe that this 

approach should be explored further. Restructuring the GeoTracker database to include 

even one representative detection limit and any relevant depth data would make the 

exploration of models on a large scale more efficient. Reevaluating and developing the 

treatment of non-detect results would strengthen the interpolation model. Exploring the 

vertical distributions of contaminants and how they can be estimated from the single-

depth monitoring points of most wells, perhaps through a case study, will also be key to 

strengthening the model. California has seen the advantage of a mass-based regulatory 

approach in the management of surface waters. A successful mass estimation model 

would open up new possibilities for monitoring and regulating groundwater quality in 

California.   
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Appendix: Description of steps taken in ArcGIS  

 

Performed in ArcMap 10.1 

 

1. Enable extensions: Geostatistical Analyst, Spatial Analyst. Add desired 

background imagery.  

2. Add excel spreadsheet “Basin” to ArcMap 

3. Add excel spreadsheet “Master Dataset - Torrance Cluster 3Yr” to ArcMap, using 

sheet “For ArcGIS” 

4. Display XY data 

a. X = LON 

b. Y = LAT 

c. Z = 3YR_AVG (for Cluster), = CON (for Basin) 

d. Coordinate System: Geographic, WGS 1984 



5. Create new geodatabase “Cluster” and export data from Cluster displayed XY 

data to this geodatabase, save as “Cluster” 

6. Create new geodatabase “Basin” and export data from Basin displayed XY data to 

this geodatabase, save as “Basin” 

7. Create Training and Testing Subsets (Geostatistical Analyst) 

a. Geostatistical Analyst → Subset Features 

i. Cluster 

1. Training: ClusterTrain 

2. Testing: ClusterTest 

3. Set to 70% Training, 30% Testing 

ii. Basin 

1. Training: BasinTrain 

2. Testing: BasinTest 

3. Set to 70% Training, 30% Testing 

b. Group the new layers with their sources (ie. cluster test and training go 

with cluster, basin test and training go with basin group) 

8. Data Exploration 

a. Separate extreme data  

i. Export data again (from initial XY Cluster data), save to a new 

geodatabase named “Custom”, name file “Custom” 

ii. Make outlier visible by using graduated size in symbology  

1. Properties-->Symbology-->graduated size, set min size to 

5, max to 30 

iii. Using Editor tool on Custom, select the one outlier site and delete 

it 

b. Data Exploration (Use Custom) 

i. Histogram of Custom 

1. Determine Transformation Type  that gives closest to 

normal distribution (log) 

ii. Trend Analysis of Custom 

1. See if data produces a flat surface 

a. In this case, it does 

2. This will determine trend removal 

iii. Semivariogram of Custom 

1. Determine lag size, lag number, partial sill, range 

2. (For Custom, there really is no good fit because there aren’t 

enough points) 

3. Remove one more outlier (the very high value near 0 

separation) to create a new subset, Custom3. 



Semivariogram is still not dense enough, but you can 

approximate parameters: 

a. lag size = 0.00009, # lags = 13 

9. Krig Cluster Concentration 

a. Input Data 

i. Source dataset = ClusterTrain 

ii. Data field = YR_AVG 

iii. For coincident data, use mean 

b. Kriging Type, Transformation, and Trend Removal  

i. Type = Ordinary 

ii. Transformation = log 

iii. Trend Removal = none 

c. Semivariogram Modeling 

i. Use parameters from Custom3 Semivariogram (excluding outliers 

from empirical semivariogram model) 

1. lag size = 0.00009, # lags = 13 

ii. Fit variogram by eye (optimization function will not work here 

because of the lag size/# lags taken from the Custom3 

semivariogram) 

1. Nugget = 0.97 

2. Model Type = Gaussian 

3. Major range (auto-calculated) = 0.00034275337953335456 

4. Anisotropy = false 

5. Partial Sill (auto-calculated) = 1.5355435370208586 

d. Search Neighborhood 

i. Smooth 

ii. Smoothing Factor = 0.4 

iii. Copy from Variogram = False 

iv. Major Semiaxis = Minor Semiaxis = 0.0025 

e. Validation Analysis 

i. Input geostatistical layer = kriged layer 

ii. Input point observation locations = ClusterTest 

iii. Field to validate on = YR_AVG 

10. Kriging depth 

a. Ordinary kriging 

b. Log transformation 

c. model = stable 

11. Map Algebra to get mass (using kriged depth layer) 

a. Export kriged concentration layer to raster 

b. Export depth to raster as well 

c. Toolbox-->Spatial Analyst-->Map Algebra-->Raster calculator 



d. Finding area of the cells in the raster 

■ Zoom in to scale of one cell 

■ Use the ruler tool, set it to area and meters 

■ Area1 = 333.245125 

■ Area2 = 334.741093 

■ Area3 = 335.090416 

■ Area4 = 334.961607 

■ Area5 = 334.604234 

■ Average Area = 334.528495 m
2
 

e. Use formula:  Int(concentration raster *depth raster * 30 * 0.3048 * 

334.528495) = Int(concentration raster * depth raster* 3058.92855828) 

i. Use 30 (= porosity * 100 so as to not lose decimal places by using 

the Int, or integer, operation) 

ii. Units: (ug*ft/L)*(30)*(0.3048m/ft)*(334.528495m
2
) 

iii. To convert to g/L, will have to multiply the sum by (0.01 to 

account for multiplying porosity by 100)(1000 L/m
3
)(0.000001 

μg/L) = 0.00001 

f. Build Raster table: Toolbox → Data Management Tools → Raster → 

Raster Properties → Build Raster Attribute Table  

g. Open the raster’s attribute table, create new field, type = long integer, Title 

= MASS 

h. Right click on MASS field, select field calculator and enter expression: 

Count*Value 

i. Sum MASS (By right clicking column and selecting statistics) 

SUM(MASS) = 1013871787793 ug  = 1013.871787793 kg 

Assume 20 ft. depth across:  

j. Use formula:  Int(concentration raster * 20 ft. * 30 * 0.3048 * 

334.528495) = Int(concentration raster * 611785.711656) 

i. Use 30 (= porosity * 100 so as to not lose decimal places by using 

the Int, or integer, operation) 

ii. Units: (ug*ft/L)*(30)*(0.3048m/ft)*(334.528495m
2
) 

iii. To convert to g/L, will have to multiply the sum by (0.01 to 

account for multiplying porosity by 100)(1000 L/m
3
)(0.000001 

μg/L) = 0.00001 

k. Build Raster table: Toolbox → Data Management Tools → Raster → 

Raster Properties → Build Raster Attribute Table  

l. Open the raster’s attribute table, create new field, type = long integer, Title 

= MASS 



m. Right click on MASS field, select field calculator and enter expression: 

Count*Value* 0.0001  [* 0.0001 to accommodate large values that didn’t 

fit] 

n. Sum MASS (By right clicking column and selecting statistics) 

SUM(MASS) = 90046173, divide by 0.0001 ug = 900.46173 kg 

 

Mass in BASIN:  
Methodology is the same as cluster with the assumption of 20 feet depth.  

SUM(MASS) = 438346471, then divide by 0.0001 

= 4383464710000 ug = 4383.46471 kg 

 

 


