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1. EXECUTIVE SUMMARY 
The Los Angeles Regional Water Quality Control Board (LARWQCB) is interested in 

exploring the possibility of regulating groundwater pollution using estimates of contaminant 
mass, in addition concentration-based regulations. As a step toward establishing mass-based 
regulation, the LARWQCB tasked a UCLA senior Environmental Science Practicum team with 
building a pollutant mass-estimate model for the West Coast section of the Los Angeles 
Groundwater Basin. The project’s goal was to calculate the mass of volatile organic compounds 
(VOCs), some of which have been associated with adverse health effects ranging from 
neurological issues to cancer.  

The model construction was based on well-sample concentration and geographic 
coordinate data from GeoTracker GAMA database and the development of a mass estimate 
equation, known as Equation 1: Mass of VOC = CXY * A * h* αS* βZ . The first two terms, 
which represent the contaminant concentration (CXY) and predicted area of concentration for a 
subset of the well-sample points throughout the basin, were obtained through the geostatistical 
interpolation technique called kriging. The next two terms, aquifer height (h) and aquifer storage 
capacity (αS), came from georeferencing the well-sample data onto a grid created by a 
collaboration of the United States Geological Survey (USGS) and Water Replenishment District 
(WRD). Equation 1’s final variable, called the z-coefficient (βZ), accounts for the change of 
pollutant concentration as a function of depth.  
 By calculating VOC mass at numerous clusters of wells throughout the basin and 
summing them together for each individual pollutant, the masses of four prominent contaminants 
in the region were estimated: perchloroethylene (PCE), trichloroethylene (TCE), chloroform and 
methyl tertiary butyl ether (MTBE). The total masses (in kilograms) of PCE, TCE, chloroform 
and MTBE were, respectively, as follows: 2,699; 7,657; 5,102; and 11,872. The accuracy of the 
mass estimates require further validation by comparison to other model estimates of plume mass 
and empirical case study data; but, the heavily concentrated distribution of each VOC mass 
throughout the basin demonstrated the capability of the model to help regulators identify hot 
spots of pollution. For instance, three or fewer clusters of well points accounted for at least 85 
percent of the predicted contamination for any given pollutant throughout the whole basin.  
 A key product of the project was a Python code and tool that together automate nearly the 
entire mass calculation process. These two items combine to make conversion between 
concentration and mass as straightforward as downloading data in the appropriate format from 
GeoTracker and running those inputs through the code.  

While the model only accounts for basins with soil and aquifer properties that are similar 
to those of the West Coast Basin, it appears to be generalizable to at least the adjacent Central 
Coast Basin within Los Angeles. Application to other regions throughout California would 
require aquifer storage data similar to the geospatial data available from existing USGS and 
WRD work products. Application to areas across the nation would also necessitate having 
extensive well-monitoring information similar to the data taken from GeoTracker.  

This type of model allows water agencies to take a step forward in achieving mass-based 
groundwater regulation. With this new approach, stakeholders have additional insight into the 
condition of the regional groundwater and can use model data to inform the establishment of 
monitoring and remediation priorities. More informed regulation will lead to more effective and 
efficient protection of a major resource in a place and time where the availability of local water 
supplies is of major concern.  
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2. INTRODUCTION 
Groundwater accounts for more than 40 percent of California’s drinking water, with 

dependence rising to as much as 60 percent during drought years (Beckman et al., 2001). 
Remediation of contaminated groundwater therefore serves as a major issue for water regulatory 
agencies and policymakers. While pollutant source control programs remain important 
objectives, effective and efficient remediation is crucial because groundwater has proven 
difficult to restore once contaminated (Asanoa and Cotruvo, 2004).  

The Los Angeles Regional Water Quality Control Board (LARWQCB) seeks to improve 
groundwater policies by employing mass-based regulation of groundwater pollution, such as to 
better inform planning for remediation and resource management.  

This project assists the LARWQCB in working toward its goals by providing a 
methodology that uses sampling well and aquifer data to estimate the total mass of any volatile 
organic compound (VOC) within the groundwaters of Los Angeles’ West Coast Basin.  

3. BACKGROUND  

3.1 RECENT REGULATORY HISTORY OF GROUNDWATER  
No comprehensive groundwater monitoring program existed in California as recently as 

15 years ago (Beckman et al., 2001). Six state and three federal agencies implemented 
monitoring programs prior to 1999 (State Water Resources Control Board, 2003), but major 
inconsistencies and data gaps stemmed from how these entities had different goals and 
objectives. The National Resources Defense Council assessed the availability of information 
pertaining to California groundwater quality as frequently unreliable and “extremely limited” 
(Beckman et al., 2001).  

A foundation for more cohesive California groundwater monitoring began taking shape 
in 1999. The Supplemental Report of the 1999 Budget Act included a section calling for a 
comprehensive program establishing “baseline ambient surface and groundwater quality 
monitoring” in the state (Legislative Analyst’s Office, 1999).  

California’s State Water Resources Control Board (SWRCB) responded to the report by 
establishing the Groundwater Ambient Monitoring and Assessment Program (GAMA) in 2000 
(Borkovich, 2012). Assembly Bill 599 — the Groundwater Quality Monitoring Act of 2001 — 
required expansion of the nascent GAMA program to incorporate and enhance existing efforts to 
characterize California’s surface and groundwater quality (Borkovich, 2012).  

The wealth of data gathered by a variety of different agencies was to be shared, integrated 
and evaluated by an interagency task force (SWRCB, 2003). Special attention was to given to 
identifying trends in groundwater issues and giving the public a tool to assist in the establishment 
of regulatory practices and priorities on a basin and sub-basin level (SWRCB, 2003). In addition 
to compiling existing groundwater monitoring data and enhancing hydrogeologic knowledge, 
members of GAMA also aimed to contribute additional public supply well sampling for dating 
groundwater and detecting low-level VOCs (SWRCB, 2003).  

Today, 95 percent of California’s groundwater use is derived from basins evaluated by 
the GAMA program. See Appendix A for descriptions of the GAMA program’s four projects 
(Borkovich, 2012), one of which is the publicly accessible GeoTracker online database that 



Page 3 of 44 

 

serves as the primary input for this project’s pollutant mass estimate model.  

3.2 POLLUTANT MASS ESTIMATION: A FUTURE DIRECTION FOR GROUNDWATER 

REGULATION  
 Groundwater pollution has historically been regulated on the basis of concentration, as 
seen in the data provided by GeoTracker GAMA. But the LARWQCB, whose responsibilities 
include regulating groundwater, seeks a shift to a mass-based estimate for pollution.  
 Precedent for mass-based pollutant estimation exists, perhaps most notably in the form of 
the Total Maximum Daily Load (TMDL). A component of the Clean Water Act and a national 
standard, the TMDL is a measure that describes how much pollutant a surface water body can 
experience before losing function (Cahn and Hartz, 2014).  

Concentration studies carry a considerable deal of uncertainty. Groundwater volume 
changes less predictably over space and time when compared to surface waters, and such 
changes are more pronounced for concentration studies (Cahn and Hartz, 2014). Two bodies of 
water with different volumes may have the same concentration for a pollutant, even though one 
receives more contaminant inputs than the other. Though more expensive than concentration-
based evaluation (Cahn and Hartz, 2014), mass-based estimates could allow for regulatory 
agencies to better detect the degree of pollutant required for concentrations to surpass 
environmental health standards (Burke et al., 2013).  

3.3 THE ENVIRONMENTAL AND PUBLIC HEALTH THREAT OF VOCS  
The LARWQCB hopes to better characterize the amount and distribution of pollutants 

within Los Angeles’ West Coast Groundwater Basin. VOCs pose a particular problem to the 
state, as they comprise the “vast majority” of organic compounds contaminating California’s 
groundwater reserves (Beckman et al. (2001). Gasoline, paints, paint thinners and solvents for 
cleaning and degreasing provide major inputs to the subsurface environment’s total VOC mass 
(Beckman et al., 2001). According to Moran et al. (2007), most VOCs have short half-lives and 
degrade rapidly, but others threaten water quality long after release because some may 
experience little biodegradation and thus persist in the environment for decades. 
 Health measures for VOCs are similar to those of other pollutants. Carried out by the 
state and federal Environmental Protection Agency (EPA) under the Safe Water Drinking Act, 
maximum contaminant levels (MCLs) define the highest concentration permissible for a 
contaminant within water used by a public system (United States EPA, 2013b). A pollutant’s 
MCL is decided upon after the EPA reviews health studies and sets a maximum contaminant 
level goal (MCGL), which determines the maximum concentration of a contaminant in drinking 
water at which no adverse health effects are observed. MCGLs are set conservatively and 
without consideration for detection limits, allowing for a margin of safety that protects human 
health. MCGLs therefore may not be realistic for many water systems (United States EPA, 
2013b). Health benchmarks are generally conservative in projections, such as to better ensure 
people’s safety.  

The United States Geological Survey (USGS) National Water-Quality Assessment 
(NAWQA) program found that 8 of 55 monitored VOCs had concentrations surpassing human 
health benchmarks in 1 percent of more than 3000 drinking-water supply well samples taken 
from throughout the nation between 1985 and 2002 (USGS, 2014). The NAWQA characterized 
ambient groundwater and groundwater reaching drinking-water supply wells, as opposed to 
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treated drinking water delivered to consumers.  
Sample concentrations, with one assigned to each studied aquifer, were compared to a 

VOC’s MCL when possible, while samples for VOCs lacking MCLs were evaluated against 
health-based screening levels (HBSLs) derived from peer-reviewed toxicity studies and EPA 
Office of Water methodologies (Hamilton et al., 2006). Not enough toxicity information was 
available to assign an HBSL to every VOC lacking an MCL.  

With VOC concentrations mostly well beneath health-based limits, the USGS report 
concluded that even if water with the observed concentrations would be ingested over the course 
of a lifetime, adverse effects were, in general, unlikely to occur (USGS, 2014).  

Though low concentrations found by the NAWQA study suggest that VOC exposure may 
be rare, some VOCs nonetheless have associations with cancer and adverse health effects on the 
nervous, circulatory, reproductive, immune, cardiovascular, and respiratory systems (Moran et 
al., 2007).  

3.4 VOCS OF INTEREST IN THE WEST BASIN  
GAMA’s Priority Basin projects, which also use drinking-water quality benchmarks to 

give context to groundwater contamination, found three VOC classification groups at moderate 
to high levels of concentrations within the 860-square mile Coastal Los Angeles Basin, which 
includes our West Coast Basin study area: chlorinated solvents, trihalomethanes (THMs) and 
gasoline additives (Belitz and Fram, 2012). Various physical and chemical traits of VOCs 
account for differing migration levels in the subsurface environment.  

Chlorinated solvents tend to be dense, non-aqueous phase liquids (DNAPLs) and so they 
often extend beyond shallow groundwater and persist for long periods of time underground when 
they accumulate in plumes above rock and soil layers of low permeability (Interstate Technology 
and Regulatory Council, 2002). Such solvents are hydrophobic but soluble enough to be 
effectively transported through water. With high mobility to go with slow biodegradation rates, 
chlorinated solvents are found at high concentrations in 4 percent of the Coastal Los Angeles 
Basin’s primary aquifer system and at moderate concentrations within 11 percent of the system; 
perchloroethylene (PCE) and trichloroethylene (TCE) are among the five solvents most 
frequently detected at high levels (Belitz and Fram, 2012).  

Most solvents detected in Los Angeles today are deemed “legacy contaminants” that 
were pushed by recharge waters over the course of decades to reach the layers of soil from which 
water is pumped (Belitz and Fram, 2012). That these VOCs can impact water quality long after 
release emphasizes the importance of persistent monitoring efforts. 

THMs rank as the second-most highly detected VOC group in the Coastal Los Angeles 
Basin, detected at moderate concentrations in about 2 percent of the primary aquifer system 
(Belitz and Fram, 2012). These compounds migrate long distances into the ground, especially in 
areas with high dissolved oxygen and low organic carbon content (USGS, 2014).  

THMs typically form as byproducts of water disinfection, resulting from reactions 
between natural compounds within the water and chlorine and chloramine (United States EPA, 
2013a). Infiltration of irrigation water and leakage of distribution systems facilitate movement 
into subsurface waters (Belitz and Fram, 2012). 

Gasoline additives come in a variety of forms, such as oxygenates and hydrocarbons, so 
their mobilities demonstrate marked variability (USGS, 2014). The USGS found gasoline 
additives, a group including methyl tertiary butyl ether (MTBE) and aromatic compounds like 
benzene, toluene and xylene, at moderate concentrations in less than 1 percent of the Los 
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Angeles basin aquifer system (Belitz and Fram, 2012).  
Oxygenates like MTBE tend to have higher water solubility and lower natural 

degradation rates than its hydrocarbon gasoline additive counterparts, and do not tend to get 
caught in soil, leading to considerable transport in the soil’s unsaturated zone (USGS, 2014).  

Gasoline oxygenates’ presence in the environment stems from their use as additives to 
allow for cleaner fuel burning, and thus reduced toxic emissions from vehicle tailpipes 
(Lidderdale, 2000). Meanwhile, hydrocarbons, although the most widely used and produced 
VOCs, are seldom detected because of high biodegradation and volatilization rates, along with a 
tendency to have subsurface movement stifled by sorption to organic carbon (USGS, 2014). 

PCE and chloroform, two of the three VOCs most frequently detected by the NAWQA 
program (USGS, 2014), were found by the Agency for Toxic Substances and Disease Registry 
(ATSDR) to cause liver and kidney tumors in mice, and are “reasonably anticipated” to be 
human carcinogens (ATSDR, 2012). The ATSDR also views TCE exposure as a potential risk 
factor for liver, kidney or lung cancer (2012). MTBE,though not considered a human carcinogen, 
has been shown to damage rodental nervous systems, livers and kidneys (ATSDR, 2012).  

3.5 STUDY AREA: WEST COAST BASIN OF LOS ANGELES  
 The Water Replenishment District (WRD), which manages “two of the most utilized 
groundwater basins in California” — the Central and West Coast Basins — in serving southern 
Los Angeles County, identifies urban sources as the dominant contributors to groundwater 
pollution in our study area (Matsumoto, 2009). The likes of landfills, gas stations, refineries and 
chemical processing facilities therefore comprise the bulk of contaminant sources in the West 
Basin (Matsumoto, 2009). VOCs are driven further into the soil from their source through 
gravity and, in the West Coast Basin, water recharge from Central Basin flow and the injection 
of imported and reclaimed water into seawater intrusion barriers. (Belitz and Fram, 2012).  

The extent to which groundwater can be contaminated depends on numerous 
characteristics of the soil and rock through which it flows. Implications of some soil factors on 
the degree of groundwater contamination possible are summarized in Table 1.  
 

Table 1. Soil Characteristics’ Implications for Groundwater Contamination   
Soil Trait Relationship to Contamination 

Texture Finer soils trap contaminants better than coarser soils.  

Porosity More porous soils allow for further contamination.  

Specific Yield Higher specific yield leads to a higher degree of contamination, as 
more pollutant-carrying water can pass through.  

Filtration Increased filtration capability reduces contamination.  
 

Within the West Coast Basin, the USGS has classified the aquifers into four layers. Each 
layer is a system separated from one another by an aquitard, or a low permeability layer. The 
upper aquifer Lakewood system is largely comprised of unconsolidated sand and gravel deposits, 
so hydraulic conductivity is generally high (Crawford et al., 2003). The upper aquifer system 
consequently sees most of its contamination occur within the first two layers, going as deep as 
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200 feet below the ground surface, to the extent of the Gage Aquifer.  
 

 
Figure 1. A diagram showing Layer 1 and 2, the West Basin’s two upper aquifer systems. 
Formations of the two systems are listed vertically starting from shallow to deep. Water can 
move easily in these layers, making groundwater contamination possible as far as 200 feet below 
the surface.  
 

The lower aquifer systems are the Upper San Pedro and Lower San Pedro, which 
respectively extend about 400 and 1200 feet below sea level. The Lower San Pedro aquifer 
system may be a marker for where groundwater contamination is possible. The underlying Pico 
Formation is non-water bearing and its contact forms the boundary of the groundwater basin 
(Crawford et al., 2003).  

Most aquifers in the West Coast Basin are confined (Crawford et al., 2003). The first 
confining bed is a layer of low-permeability clays called the Bellflower aquiclude, which may 
inhibit complete downward vertical migration of contaminated plumes from semi-perched, or 
unconfined, aquifers. TCE migration, however, is observed where there are windows of 
permeable deposits in the confining layer (Lyles, 1998). The Bellflower Aquiclude does not 
restrict groundwater movement between aquifer strata (United States EPA, 2012). 

3.6 FOUNDATIONS FROM PAST RESEARCH 
 Burke et al. (2013) used concentration as well as longitudinal and latitudinal coordinate 
data from the GeoTracker GAMA database to quantify the mass of a single contaminant, PCE, 
within a test site and the entire West Basin.  

A major component of the project was the use of an interpolation technique called kriging 
to generate a prediction surface of concentration values between and around data points, which 
in this case are the reported concentration values of a contaminant at different groundwater 
sampling well sites. The model developed in this paper would make use of the same general 
methodology to generate concentration prediction surfaces, but apply the concept to multiple 
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contaminants.  
Another important aspect of the Burke et al. model incorporated into this model was the 

creation and summation of a series of smaller prediction surfaces of smaller data subsets, or 
clusters of well points. Breaking up the study area into smaller sections for kriging software to 
process yielded for Burke et al. a more accurate model than one obtained from generating  
a single, bigger prediction surface.  
 Burke et al. also acknowledged two key areas to address for improved models. One 
suggestion was to better characterize the vertical distribution of contaminants into the subsurface 
environment, and consequently the total volume of a contaminant plume. Burke et al. assumed 
that contaminants traveled no further than a depth of 20 feet underground, the average length of 
well screens and a measure seen by the LARWCQB as standard within groundwater monitoring.  

Such a model could significantly underestimate plume volume. Using screen lengths to 
represent vertical plume extent would not account for contaminant concentrations existing 
beyond the well screening interval. The resulting underestimation would likely be considerable, 
given how groundwater contamination in the West Coast Basin can be found anywhere from the 
shallow subsurface to depths of up to 1000 feet below the surface in the Lower San Pedro aquifer 
system (Crawford et al., 2003). We also expected the model to overestimate volume of dense 
contaminants in areas where the screen lies too deep into the confining unit.  

Another suggestion by Burke et al. was to develop a more complex way to address 
contaminant concentrations below a threshold detection level, which we will refer to as “non-
detect data” for the rest of this paper.  

3.7 THE ISSUE OF NON-DETECT DATA  
 Non-detect data pose challenges that must be accounted for in constructing a mass 
estimation model. More than half of the PCE well samples in the GeoTracker GAMA have 
concentrations values of zero, meaning that many pollutants were either absent from the wells at 
the time of monitoring, or, more likely, present at a concentration below the detection limit for a 
given sampling well.   

Detection data exists for only 4,347 of 9,435 measurements in the Los Angeles coastal 
plain for PCE. If these 5,000-plus zeroes remain untreated before input into a mass estimation 
model, resulting projections would underestimate contaminant concentration.  

Substitution provides one approach for dealing with non-detect data. Burke et al. 
employed substitution by downloading minimum detection limit (MDL) information from an 
Environmental Sensitivity Index (ESI) monitoring report for their single pollutant of interest, and 
took half of that MDL as a substitution number to assign to all non-detect values in a specific 
well. The halfway point between zero and an MDL gives a standard-practice estimate of non-
detect data (Burke et al., 2013). But using such substitution introduces an external input into the 
dataset, potential altering the data in a way that Helsel and Lee warn against (2006). 

Another downside to the ½-MDL method is that many MDLs exist for any one 
contaminant because detection limits are set according to instruments, operators and methods 
specific to certain wells. Finding each MDL for a specific pollutant at a particular well site 
would be demanding, especially given how the project detailed in this paper was intended to 
analyze multiple contaminants.   



Page 8 of 44 

 

Substitution with a uniform value would also decrease the standard deviation of the 
database and affect related statistical tests. A high percentage of non-detect data in the 
GeoTracker database may lead to big changes in standard deviation (Pitt, 2007). An indicator of 
data variation, standard deviation will be an important parameter in later analysis, particularly for 
modeling through kriging. Substitution, while widely used, is not an ideal method of data 
treatment. 

Alternative methods for addressing non-detect data include maximum likelihood 
estimation (MLE), the Kaplan-Meier (K-M) estimator, and regression on order statistics (ROS) 
offered by the Nondetects and Data Analysis (NADA) package (Helsel and Lee, 2006).  
In addition to choosing an improved substitution method, another component of our project 
would deal with whether ½-MDL substitution values would even improve upon the accuracy 
established by simply keeping concentrations of zero within our model.  

4. GOALS & OBJECTIVES 
The LARWQCB seeks to regulate groundwater pollution based on total mass limits, such 

as to create more flexible and efficient regulation for long-term water resources planning. That 
agency set a goal for this project to estimate the total mass of VOCs in the West Coast section of 
the Coastal Los Angeles Basin. To allow for enough time to refine a mass estimation model, the 
scope of this project was narrowed from all VOCs to just four priority pollutants in groundwater: 
PCE, TCE, chloroform and MTBE.  

The project’s objectives were to: 
(a) develop a model with reproducible results that estimates groundwater pollutant 

concentration and uncertainty in the estimates of concentration, 
(b) optimize this model by varying data manipulation processes and comparing error 

outputs, 
(c) run our optimized model for the West Coast Basin,  
(d) convert concentrations output to mass using groundwater storage capacity data 

and  
(e) program a script and tool that, together, automate the entire process of calculating 

VOC mass.   
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5. METHODS 
The following formula, Equation 1, was developed to form the basis for calculating the total 
mass of a given VOC within the West Basin:  
 
Equation 1: Mass of VOC = CXY * A * h* αS* βZ ,  
 
where       
 
CXY = predicted XY concentration for a single cluster (obtained from kriging) 
A = prediction area for a single cluster (obtained from kriging) 
h = aquifer height (subtracting the aquifer layer heights from each other)  
αS = aquifer storage coefficient  (for confined aquifers) or specific yield (for unconfined aquifers) 
βZ = z-axis variation coefficient (from the concentration curves).  
 

This equation would be applied to a number of smaller areas comprising the West Coast 
Basin. The masses would then be summed to produce the total amount of contaminant within the 
study area. Figure 2, shown below, summarizes the process of obtaining the value for each of 
Equation 1’s five variables. Following sections will detail each step and identify important 
assumptions required to make these calculations.  

5.1 GENERATING A CONCENTRATION PREDICTION SURFACE 

5.1-a Data Source: GeoTracker GAMA  

 The input data for this model consisted of coordinate and concentration information for 
VOCs of interest within the West Coast Basin. To create a snapshot of the current groundwater 
contamination situation and keep the data processing manageable within kriging, only data from 
the past year was utilized. Locations not represented in the database were assumed to be free 
from contamination, given that well-monitoring efforts are probably committed to urban areas 
best believed to actually have VOC problems. The model was thus only representative of the 
wells put into it, and therefore did not generate any predicted well points.  

Concentrations for wells with multiple readings were averaged out to produce a single 
concentration at each well. The locations of wells sampled for PCE are shown in Figure 3. 

Examination of whether or not there were any well points sampled in previous years that 
the current data set did not account for showed that almost all well points were present in 
multiple datasets. Points not present in the current dataset were non-detects in prior years. 

The option to download data from the past three years was not utilized because in the 
process of generating a prediction surface, kriging does not take time into account. Samples 
taken at the same well points at different times would both be represented in the prediction 
surface, and such a scenario would not accurately represent reality.  

Among the project’s initial goals was to develop an efficient and reliable technique for 
breaking up the downloaded GeoTracker GAMA dataset into smaller groups. The creation and 
implementation of a clustering method would make for more accurate models: Running the 
entire data set demonstrated error magnitudes greater than that of a selected test-site model.  
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Figure 2. A flowchart summarizing this project’s methodology for calculating the mass of a single contaminant within the 
West Coast basin.  
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Figure 3. PCE well points from GeoTracker GAMA georeferenced onto the West Basin. 
The map shows a portion of the entire Los Angeles Groundwater basin.  
  



Page 12 of 44 

 

The program ArcMap was used to create 153 polygons, each representing a cluster of 
joined sample well points. For identification purposes, a unique number is assigned to each 
cluster of well points. PCE data was used to create the one set of clusters applied to the four 
VOCs of interests. Since the well points sample for a number of contaminants, georeferenced 
well sample points should always appear in one of the 153 clusters.  

Polygons were designed with two concepts in mind: proximity of the well points to each 
other and the purpose of the well sampling sites. Because kriging does not account for geospatial 
statistics, well points with data that may communicate with each other needed to be distinguished 
from well points that probably did not. 

5.1-b Clustering of Well Points  

Well points closer together influencing each other more so than do other points formed a 
key assumption for this clustering process. For example, wells all around a gas station were 
clustered together, as they were likely more related to one another than points centered on a 
neighborhood a mile away. Land use also informed the possible distribution of the pollutant 
plume: An industrial aerospace factory would be expected to produce a bigger plume than a 
single dry cleaning facility.  

Despite the fact that clustering helps to increase the accuracy of kriging, the process also 
negatively impacts the model because it dilutes the data. Burke et al. (2013) discovered that 
kriging yields less error when the areas it acts upon are densely populated with well points. Not 
all clusters had a substantial number of points, with clusters of five or less data points being 
common.  

Clustering would also be essential for enhanced accuracy of non-detect data treatment 
(Figure 4).  

5.1-c Non-detect Data Treatment 

To address the non-detect uncertainty, a treatment method for zero values that could more 
closely represent reality was sought. A brief summary of non-detect treatment methods are 
provided in Table 2 (Helsel and Lee, 2006) below.  
 
  



Page 13 of 44 

 

Table 2. Non-detect Treatment Methods  
Method How it works Pros Cons Conclusion 

Substitution 
(Half-MDL)  

Takes a fraction of 
the minimum 
detection limit  

Simple Introduces 
pattern external 
to the dataset 

Does not fit 
because of  
high extent of 
bias  

Maximum 
likelihood 
estimation 
(MLE) 

Takes mean and 
variance as 
parameters and 
finds parametric 
values 

Work best with 
a large (>50) 
sample size  

A distribution 
must be 
specified  

Does not fit; 
we have small 
sample size for 
each cluster 

Kaplan-Meier 
(K-M) 
estimator 

Uses survival 
analysis to estimate 
a survival function  

No distribution 
assumed 

Hardwired for 
right-censored 
data, used for 
less than 50% 
non-detect value 

Does not fit 
because a 
majority of our 
data consists of 
non-detect 
samples  

ROS Uses a regression 
line in a probability 
plot 

Can work for 
small population  

More than 3 
positive 
observations 
needed 

First-choice 
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Figure 4.  Delineated clusters of GeoTracker GAMA VOC well points in the Los Angeles 
West Coast Basin. The map displays all 153 groups of well points located in the study area.  
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The conclusion was made that ROS is the most suitable method for this GeoTracker 
dataset because of its small number of positive observations, or non-zero concentration values, 
per cluster. That choice was also appropriate because the dataset does not follow any 
distribution, a condition allowed by ROS.   

ROS applies a regression line in a probability plot to estimate a non-detect value based on 
non-zero observations. The mean and variance of the whole population of data points can be 
estimated by ROS, and the non-detect value can be calculated based on the difference between 
the original mean and the ROS output’s new population mean. The ROS substitution value 
would then be assigned to all zeroes within a given cluster.  

Before ROS was run on the applicable clusters in dataset, data manipulation that 
optimized the estimations of mean and variance had to be performed.  

The presence of repeated measurements was noticed within some of the same well sites. 
In order to avoid assigning too much weight to those repeated measurements, only one 
measurement was left for each well site by assigning the well the average of all repeating 
measurements as the value. See Appendix B.1 for more details on the removal of repeating 
measurements in the programming software R. 

 Also, since ROS does not incorporate geographical information, concentrations from one 
area may affect the estimation of a non-detect value at a distant location. The clustering of data 
points provides the geographical component needed to increase the accuracy of the program’s 
estimations.   

According to Helsel and Lee, ROS requires at least three positive observations to draw 
the regression line for estimation (2006). A test was thus carried out to make sure that ROS was 
only run on clusters with non-detect data containing at least three non-zero concentration data 
points. Appendix B.2 provides commands in R to execute such a test. Appendices B.3 and B.4 
detail additional helpful R commands for ROS analysis.  

ROS yields an estimated mean and median instead of a substitution for a non-detect 
value. Some mathematical calculations are necessary to get the non-detect substitution value.  

 
ROS substitution value for a cluster with non-detect data =  
 
(ROS mean- original mean) * total # of points in a cluster / number of well points with 
concentrations of zeroes  

 
ROS mean =  mean group concentration when zeros are replaced with the ROS 
estimation;and  
original mean = mean of concentration in each cluster without ROS treatment.  

 
Figure 5 summarizes this project’s approach to dealing with clusters containing non-

detect data without the use of MDLs.  
In addition to settling on a substitution method, another non-detect goal for this project 

was to determine how much of a difference the half-MDL method made for the prediction 
surface and concentration versus simply leaving in the non-detect data. Findings regarding this 
matter are shown in the Results section of this paper.  
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Figure 5. The project’s decision-making process for treating non-detect values.  
 

The primary method within this project’s model for dealing with non-detects was to run 
ROS on the concentration data by cluster. ROS, however, requires that there be at least three 
non-zero values in the dataset to run, therefore it was necessary to devise a method for dealing 
with non-detect values in all clusters having fewer than three non-zero values. Use of the ½-
MDL method employed by Burke et al. was considered, though that method would be very time-
intensive. 

 Therefore it was decided to explore the route of leaving the non-detect values in such 
clusters as zeros. That was achieved by choosing three clusters and converting all non-detect 
values to half of the wells’ respective MDL values, and running the kriging model on this data. 
Kriging was then run on the same clusters with the non-detects left as zeros.   

5.1-d Data Normalization 

The kriging model requires an input dataset that is normally distributed, but most 
GeoTracker GAMA information does not fulfill that condition. A large number of non-detect 
values caused the input data set to be heavily skewed.  

The ArcMap kriging tool comes with a function to normalize input data before it is 
processed. Box-cox, log and sin are the transformation functions offered in the ArcMap program. 
A literature review was conducted to determine which transformation would produce the least 
erroneous model. Multiple kriging analyses were performed for the PCE data set, optimizing a 
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parameter and varying all other potential parameters to determine which transformation led to 
the most accurate model.  

5.1-e Kriging to Produce a Concentration Prediction Surface 

 Kriging was performed with the transformed data sets to produce prediction surfaces 
along the X-Y, or longitudinal and latitudinal, axes. These surfaces are the result of interpolation 
around the well points from GeoTracker GAMA to yield estimations of pollutant concentration 
distribution in the north, south, east and west directions.  

Ordinary kriging was used, since the method operates under an assumption applicable to 
this project: No true mean value exists for the data set. Like in the work of Burke et al. (2013), 
ROS was run on individual clusters comprised of localized well sites rather than on the West 
Coast Basin as a whole, and the technique was found to increase the accuracy and efficiency of 
the model. 

To place the well points into clusters that allowed for a series of smaller and more 
accurate models, the same clusters from ROS treatment were used for input data sets in kriging.  

5.1-f Assessing the Kriging Model’s Accuracy  

The kriging process outputs statistics for cross-validation, a means of assessing the 
model’s accuracy. In cross-validation, one data point is removed and the whole model is run 
without that data point (ESRI, 2013). A predicted value for that data point will then be compared 
to the actual, observed value removed from the model. Every data point within an influential 
distance of another point is systemically removed though this cross-validation method.  
 Kriging uses different mathematical models to interpolate values. For each model type, 
ArcMap’s built-in auto-optimization function was used to manipulate the rest of the variables to 
output the best-fit interpolation for a test site composed of a large cluster with varied 
concentration values.  
 To assess the accuracy of our model, four types of error (ESRI, 2013), which are 
summarized in Table 3, were examined.  
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Table 3. Measurements of Error for Optimizing Kriging Accuracy  

Type of Error Definition and Implications  

Mean error Represents the average difference between the predicted concentration 
values from kriging to the actual, observed values from GeoTracker 
GAMA. The negative sign means the predicted values are, on average, 
smaller than the observed values. 

Mean 
standardized 
error 

Illustrates variance in mean error values.  Represents the average standard 
deviation of the difference of the predicted and observed values. More 
accurate models have mean standardized errors close to 0.  

Root mean 
square error 
(RMSE) 

Indicates the difference between predicted and observed values. This 
measure is the square root of the average of the square of all the 
differences between the predicted and observed values.  Model accuracy 
increases as the RMSE value decreases.  

Root mean 
square 
standardized 
effect (RMSSE) 

A measure of variability among prediction values. Should this value be 
greater than 1, variability is underestimated in predictions, while a value 
less than 1 indicates overestimation of prediction variability. More 
accurate models have values close to 1.  

 

5.2 USING AQUIFER TRAITS TO CALCULATE THE VOLUME OF A CONTAMINANT 

PLUME  
 Contaminant plume volume was calculated by using the equation V = AhαS, where A is 
the area of the cell with the surface kriged concentration prediction, h is aquifer height, and αS is 
the portion of the aquifer volume that is taken up by water, also known as the storage coefficient.  
Because kriging was conducted by cluster, the calculation of volume needed to be performed by 
cluster as well. To calculate a cluster’s volume, the area of the kriged surface was multiplied by 
the height and storage coefficient value, and also by the mass coefficient.   
 To determine a cluster’s area (A in Eq. 1), the cell size of the cells within the cluster’s 
kriged concentration raster was multiplied by the number of cells in the Kriged cluster.   

Height (h in Eq. 1) and storage coefficient (αS in Eq. 1) values were calculated using 
raster data from the USGS that was developed in MODFLOW, a three-dimensional groundwater 
model, and subsequently converted to ½ mile x ½ mile GIS cells by the WRD for its 
groundwater basin available storage calculation (Johnson and Njuguna). These raster grids 
provide spatial data for the top and bottom elevations of the aquifers systems (TOL/BOL), land 
surface elevation (LSE), groundwater elevations (GWE), and specific yields and storage 
coefficients (SY/SC). That data was obtained from the WRD, and used to calculate water storage 
for each ½ mile by ½ mile cell in the basin.    
 

5.2-a Obtaining Aquifer Height  

The volume of water held within all four aquifer layers of the West Basin, which can 
extend to a depth of approximately 1000 feet, was incorporated into the project model through 
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use of GIS layer thickness and groundwater elevation (GWE) rasters. Storage concepts 
established for the WRD total available water volume calculation were used in the project to 
quantify the height occupied by existing groundwater. Figure 6 on the next page shows the 
conceptual model assuming four different aquifer scenarios (Johnson and Njuguna).   

 

 
Figure 6. The four aquifer scenarios identified by Johnson and Njuguna. “A” shows a  
fully unconfined aquifer, while “B” shows a mixed aquifer that is both confined and unconfined.  
Scenario “C” depicts a fully confined aquifer and “D” displays an area in which no water storage 
is possible.  
 

Table 4 lists the various layers and aquitards in the West Coast Basin, along with their 
aquifer type and the raster data and formula used to compute aquifer height. 
 
Table 4. Calculating Aquifer Height  

Aquifer Type Layers Formula for Aquifer Height Calculation  
Layer 1 Unconfined 1 GWE1 - Lay1Bot* 

Layer 2 Confined 
Aquitard between 
layers 1 and 2 GWE2 - Lay2Top** 

Layer 2 Unconfined 2 
Lay2Top - Lay2Bot (if GWE2 - Lay2Top > 0)  or  
GWE2 - Lay2Bot (all other conditions)  

Confined  3, 4 GWE3 - Lay3Bot; GWE4 - Lay4Bot 
 *Lay1Bot = The depth (in feet) at which the bottom of Layer 1 occurs  
 **Lay2Top = The depth (in feet) at which the top of Layer 2 occurs  
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5.2-b Obtaining the Aquifer Storage Coefficient  

 Effective porosity  (αS ) is represented by specific yield (SY) for unconfined aquifers, 
and storage coefficient (SC) for confined aquifers. Specific yield represents a ratio describing the 
volume of water capable of draining from a saturated area as a result of the force of gravity. SY 
was used to calculate volume for unconfined areas, where drainage is the predominant 
mechanism for groundwater flow. Similarly, SC represents the volume of water released from 
storage per unit change in the hydraulic head. This pertains to areas undergoing constant water 
compression without drainage, such as confined aquifers. 

Effective porosity was assigned to each cluster based on the cell in which the centroid 
coordinates of each cluster wound up, with each cell of the raster grid having a porosity value 
designated by the USGS and WRD. The storage raster cells had ½ mile by ½ mile dimensions, 
while clustered cells were only 26 meters by 26 meters, and each cluster was mostly contained 
within a single cell.  

The product of the layer height, cell unit area, and effective porosity yielded the total 
drainable water volume of the aquifer within each cell. In the final model, because the majority 
of clusters were smaller than a ½ mile by ½ mile, the cell unit area was replaced with the cluster 
area in to total water volume calculation.   

5.3 ACCOUNTING FOR CONTAMINANT VARIATION WITH DEPTH: THE Z-
COEFFICIENT  

As a contaminant travels deeper into the subsurface environment, its concentration will 
vary based on numerous factors, including the physical and chemical properties of that pollutant 
and the hydrogeological properties of the surrounding soil and rock. Not all groundwater will be 
saturated with contaminant, so a constant for each contaminant was introduced to address such 
differences in vertical distribution for a given X-Y coordinate.  
 The z-coefficient (βZ) represents the fraction of a water volume that is contaminated with 
a VOC of interest.  

A USGS report (Belitz et al., 2000) that included data from a model accounting for many 
dynamic subsurface processes like groundwater recharge and flow, provided the information 
needed to construct a curve depicting contaminant concentration as a function of different depth 
for four contaminants: PCE, TCE, MTBE and chloroform. Each of the four were among the 12 
organic pollutants that received “additional evaluation” by a Priority Basin report for the Coastal 
Los Angeles Basin (Belitz et al., 2012).  

Plotting concentration as a function of depth helps in the calculation of a z-coefficient for 
each of the four contaminants. Determining the z-coefficient by looking at the graphs included 
drawing a best-fit curve through the data points and determining a depth at which a maximum 
concentration occurs. The z-coefficient would be the ratio of the integral of each concentration 
versus depth curve divided by the integral of a pollutant’s maximum concentration over the 
entire depth. Figure 7 displays these curves for the four studied contaminants.  

The observed maximum concentration was integrated for a given VOC under the 
assumption that such a value was a reasonable approximation of effective solubility for that 
contaminant. Intuitively, the maximum concentration and effective solubility could be expected 
to be similar if samples were predominantly taken from effectively saturated contamination 
areas, an assumption made because sampled locations were likely areas assumed to have 
considerable VOC pollution.  
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In reality, effective solubilities are difficult to generalize. True effective solubility values 
can lie anywhere from maximum concentration to aqueous solubility, with the latter often greater 
than the former by orders of magnitude. As a result, this project’s model could overestimate total 
mass, as we would be integrating at higher solubility values.  
This technique also required the generation of data points in the programming software R that 
were not in the original data set from the USGS. Points external to the data were generated 
around the 48 downloaded points to yield a more effective curve. Such interpolation was 
necessary considering the limited amount of data given in the USGS report. Appendix C shows 
the R commands required to generate the two integrals needed to calculate the z-coefficient.  

5.4 POLLUTANT SELECTION  
 This project focused on providing more information about pollutants that regulators in the 
West Basin figured to regard as particularly concerning. An investigations report for the Coastal 
Los Angeles Basin Priority Basin Project informed the decisions of which VOCs would be 
estimated in the West Basin.   

The document contained a section highlighting 12 organic contaminants that warranted 
“additional evaluation” (Belitz et al., 2012). Those contaminants received special attention either 
because a notable portion of their samples within the basin showed moderate to high 
concentrations relative to health standards, such as MCLs, or they displayed detection 
frequencies greater than 10 percent throughout the basin.  

These 12 organic pollutants were considered during the search for data needed to 
construct the z-coefficient curves. PCE, TCE, chloroform and MTBE, which each qualified for 
“additional evaluation” in the report, turned out to be among the few contaminants with enough 
data points to construct reasonable depth versus concentration curves.  

With PCE, chloroform and MTBE being the three most frequently detected VOCs in 
domestic and public wells (USGS, 2014) and how these contaminants are representative of the 
most common VOC groups in the basin (Belitz and Fram, 2012), the characterization of those 
pollutants has a reasonable chance of being a high priority for regulatory agencies.  

See Appendix D for an expanded explanation for the Priority Basin report’s evaluation 
of contaminants as applied to the four contaminants of interest.   

5.5 AUTOMATED CALCULATION OF VOC MASS ESTIMATE  
 Almost all of the project’s methodology, from the importing of GeoTracker GAMA data 
into ArcMap through the calculation of a single VOC’s mass in the West Coast basin, has been 
automated through the development of a tool and code (Bruguera and Tsang, 2014). These two 
items — the Clustered Kriging tool and Mass Output code — were developed in Python, the 
programming language used in kriging.  

In tandem, the Clustered Kriging tool and Mass output code allows users to run pollutant 
data from GeoTracker GAMA through the polygon clusters, aquifer volume raster and to 
produce a mass-estimate for a given VOC.  

Appendix E provides a comprehensive report for the creation, use and implications of 
this automated mass estimate technique. 
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Figure 7. Graphs showing the concentrations of four contaminants over depth. The x-axis 
represents depth (meters) and y-axis represents concentration (micrograms/liter). Each VOC has 
a different distribution due to differing properties between each type of VOC.  
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6. RESULTS  

6.1 NON-DETECT TREATMENT 
Visualized in Figure 8 below is a comparison between the effect on concentration 

prediction surfaces by using the ½-MDL non-detect treatment method versus that of leaving non-
detect data untreated by the ROS technique. Little difference was seen between the prediction 
surfaces generated by kriging the two data sets.  
 

 
Figure 8. A comparison of a PCE kriged prediction surface between a model that keeps all 
non-detect concentrations at zero versus a model that substitutes half of the MDL for that 
contaminant at that well site.  
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6.2 SELECTING A DATA NORMALIZATION TECHNIQUE 
 The sin transformation was eliminated immediately because the GeoTracker data set was 
not governed by a sinusoidal function. A comparison of the box-cox and log transformations,  
carried out through the geostatistical wizard kriging tool, verified the finding from the literature: 
box-cox transformations are most accurate for modifying input data in groundwater kriging 
models (Varouchakis et al., 2012). In all cases but one, box-cox transformed models produced 
less error than log transformed models. See Table 5 for more details.   
 
Table 5. Summary of Data Transformation Optimization Error Analysis 
Transformati
on type Box-cox Box-cox Box-cox Box-cox Log Log Box-cox Box-cox Box-cox Box-cox 
Power 
parameter 1 1 1 2 N/A N/A 1 1 1 1 
Order for 
trend removal  None None None None None Second Second Second Second First 
Kernel 
Function N/A N/A N/A    Gaussian 

Epanechn
ikov 

Con- 
stant Gaussian 

Semivariogra
m 
Mathematical 
Model Stable Stable Stable Stable 

Stabl
e Stable Stable Stable Stable Stable 

Smoothing 0 0.5 1 0 0 0     

RMSE 1519.57 1520.41 1522.4 4788.79 
2961

.31 2961.31 1521.12 1521.56 1521.92 1711.33 
 

The results of a literature review and kriging error analysis showed the box-cox 
transformation to be the ideal transformation model. In the final automated model, however the 
empirical transformation available through ArcMap’s Empirical Bayesian Kriging (EBK) tool 
replaced the box-cox transformation.  
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6.3 SELECTING MATHEMATICAL INTERPOLATION MODEL TYPES AND PARAMETERS 
For each model type, kriging was executed and the cross validation statistics were 

recorded. Table 6 summarizes the error analysis for the different models.  
 
Table 6. Summary of Error Analyses for Each Model Type  

Model Mean Error 

Mean 
Standardized 
(least error = 
close to 0) 

RMSE (least 
error = close 
to 0) 

RMSSE (least 
error = close to 1; 
if <1 
overestimating 
variability, if >1 
underestimating 
variability) 

Average 
Standard 
Error 

hole -402 -0.07 3908 0.95 2637 
k-bessel -371 -0.257 4143 2.87 972 

stable -367 -0.261 4133 2.93 963 
spherical -354 -0.267 4192 3.06 946 

tetraspherical -350 -0.266 4201 3.07 945 
gaussian -351 -0.268 4201 3.1 941 

exponential -346 -0.27 4213 3.14 932 
pentaspherical -341 -0.27 4229 3.18 924 

rational quadratic -335 -0.27 4247 3.23 920 
circular -317 -0.279 4300 3.39 911 
j-bessel -308 -0.28 4327 3.42 889 

empirical bayesian 
EBK -55 -0.235 1990 3.86 632.58 

 
 

After the input data was transformed through normalization, kriging was run to produce a 
prediction surface map for PCE. The final automated model executes Kriging only on clusters 
that have a great enough amount of mass, as determined by the criteria of having a mean well 
sample concentration value that exceeds 0.1 g/L and containing at least eight well points.  
Because the majority of clusters do not meet these criteria, as illustrated by Figure 9, they are 
not kriged in the automated method.   

As displayed in Figure 10, contaminant concentration was found to be low across the 
majority of the basin, ranging between 0 and 0.5 g L-1, with a few outlying hotspots of 
contamination, which the model krigs and estimates mass.   
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Figure 9. A plot showing the distribution of the number of well points and average 
concentration of each cluster. The majority of clusters which do not meet the kriging criteria 
have relatively low concentrations compared to clusters which do meet the criteria, with the 
exception of a few outliers. 
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Figure 10. The predicted PCE concentration surface produced by the optimized k-bessel model, using data from all un-
clustered basin well points. Note that this is representative of the concentration across the basin, but not representative of the final 
kriging rasters and these are only of hotspots with the high PCE concentrations. .
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6.4 CALCULATING AQUIFER STORAGE VOLUME  
Pictured on the next page is Figure 11, a map of the West Coast Basin’s aquifer storage 

volume. This map was generated by summing the product of: 
a) the height of each aquifer layer,  
b) the cell’s specific yield or storage coefficient and  
c) the ½ mi by ½ mi area of each cell.  
 
Because kriged cluster cell size was 26 meters x 26 meters, and entire clusters were often 

less than a ½ mi x ½ mi, so clusters were often encompassed by only one or two storage cells.  
Since ArcMap’s raster calculator sum requires that raster layers have the same cell size and 
extent to be summed, the planned raster calculator function of multiplying kriged cluster 
concentration by storage raster volume to get mass could not be conducted.  

Instead, to get the aquifer storage volume value, the centroid (or coordinate center) of 
each cluster was calculated, and the aquifer storage value at this point was taken, and used for 
the entire cluster. Because the initial aquifer storage volume raster cell values included the ½ 
mile x ½ mile area in the volume calculation, and this area needed to be modified to be the area 
of the actual cluster, the aquifer storage raster cell values were divided by ½ mi x ½ mi, such that 
they would only include the aquifer height and storage coefficient.   
In the final mass calculation, this height and storage coefficient aquifer value was multiplied by 
the area of each cluster, as determined by the kriged cluster cell size (26 meters x 26 meters) 
multiplied by the number of cells in the cluster. 

6.5 CONSTRUCTING CONCENTRATION CURVES FOR THE Z-COEFFICIENT  
Integral calculation in R yielded a z-coefficient of .642 for PCE, .292 to TCE, .691 for 

chloroform and .363 for MTBE. The four graphs depicted below in Figure 12 show the curves 
and integrals used to calculate the z-coefficient for each pollutant. 

6.6 CALCULATING VOC MASS  
The code calculates pollutant mass within each of the 153 clusters and compiles that data 

into a single table with cluster IDs, pollutant concentration for each cluster, aquifer depth and 
storage value. Figure 13 displays the part of the code that deals with calculating mass and the 
creation of a summary table, while Figure 14 shows a program run’s output of a summed 
estimated pollutant mass within the entire study area. Appendix E provides a comprehensive 
report and user manual on the code and its creation.  
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Figure 11. A map of groundwater aquifer storage throughout Los Angeles’ West Coast 
Basin. Darker colors indicate increased ability to hold water, in acre-feet. This map was 
generated by summing the product the height of each aquifer layer, multiplied by its specific 
yield or storage coefficient, and multiplying this by the ½ mi by ½ mi area of each cell.  When 
calculating aquifer storage for each cluster, the storage cell ½ mi by ½ mi area was replaced by 
the area of the cluster.  
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Figure 12. These are best-fit curves fitted to the concentration versus depth graphs. The z-
coefficient is the ratio of the integral of the curve, shown in blue, divided by the integral of the 
maximum concentration over the entire depth, which is represented by the area underneath the 
pink line. This coefficient represents an estimation of how much a given VOC contaminates the 
depth of the groundwater at a particular XY location. 
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############### Multiply Kriged Rasters by Aquifer Storage Volume ################### 
 
#For all kriged rasters, perform raster calculator 
rasterlist = arcpy.ListRasters('*', 'TIF') 
#Create empty list to add total mass of all clusters 
mass_list = list() 
#Create table for cluster concentration, cell number, and mass information 
##In tool, would be USER SPECIFIED mass output table 
mass_table = "Mass_Table" 
arcpy.CreateTable_management(folder_path, mass_table) 
#Create fields for cluster ID, total concentration, cell number, aq storage, and mass 
arcpy.AddField_management(mass_table, "Clust_ID", "DOUBLE") 
arcpy.AddField_management(mass_table, "Sum_Conc_ugL", "DOUBLE") 
arcpy.AddField_management(mass_table, "Num_Cells", "DOUBLE") 
arcpy.AddField_management(mass_table, "Aq_Storage", "DOUBLE") 
arcpy.AddField_management(mass_table, "Mass_kg", "DOUBLE") 
 
#Import numpy module 
import numpy 
#Create insert cursor to populate table 
 
for krigedRas in rasterlist: 
 #Determine cluster ID of kriged raster 
 num = krigedRas.index('d') 
 numP1 = num + 1 
 cluster = int(krigedRas[numP1:-4]) 
 print "Cluster "+str(cluster) 
     
 #Create array from kriged raster to get cell values 
 myArray = arcpy.RasterToNumPyArray(krigedRas) 
 #sum array rows to create array of total concentration value for each row 
 sum1 = sum(myArray) 
 #sum array of total row concentrations to get total concentration of kriged raster 
 sum2 = sum(sum1) 
 print "  Sum of surface concentrations: "+str(sum2)+" ug/L" 
     
 #Calculate number of cells in kriged area 
 kriged_width = len(myArray) 
 kriged_length = len(sum1) 
 kriged_cell_num = kriged_width*kriged_length 
 
 #Get aquifer storage cluster index 
 #Get index value of kriged raster cluster in list of cluster IDs 
 clusterID_index = int(clstID_list.index(cluster)) 
 #print "  Cluster ID List Index: "+str(clusterID_index) 
 #Get aquifer storage of indexed cluster 
 aqStor = AqStor_list[clusterID_index] 
 print "  Cluster aquifer storage: "+str(aqStor) 
 
#Calculate mass of cluster 
#Explanation of mass calculation: mass = concentration [ug/L] * aq storage w/ depth[m] / # 
cells (kriged_cell_num from array calcs) [cell] * XY Cell area [m^2/cell] * # cells 
(kriged_cell_num from array calcs) [cell]* mass coefficient (unitless) * 1000 (cubic meters 
to liter conversion) [L/m^3] * 1/1000000000 (micrograms to kilograms conversion) [kg/ug] 
 #####in tool, would be USER INPUT MASS COEFFICIENT, as it varies by pollutant 
 mc = 0.642 
 mass = sum2*aqStor*22.26*22.26*mc*1000/1000000/1000 
 print "  Cluster mass: "+str(mass)+" kg" 
 mass_list.append(mass) 
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 #Update Table Rows 
 rows = arcpy.InsertCursor(mass_table) 
 row = rows.newRow() 
 row.Clust_ID = cluster 
 row.Sum_Conc_ugL = sum2 
 row.Num_Cells = kriged_cell_num 
 row.Aq_Storage = aqStor 
 row.Mass_kg = mass 
 rows.insertRow(row) 
     
 del rows, row, aqStor, clusterID_index, cluster, myArray 
print "done" 
 
#Sum list of mass by cluster to get total Basin Pollutant Mass 
tot_mass = sum(mass_list) 
print "Total Pollutant Mass in West Coast Basin: "+str(tot_mass)+" kg" 
 

Figure 13.  For each kriged cluster, the total number of cells, the sum of the concentration 
values, and the aquifer storage value are calculated, and this information is put into the table 
generated at the end of the code.  These values are then used along with the aquifer storage and 
mass coefficient to produce a mass estimate.   
 
 
Cluster 132 
  Sum of surface concentrations: 392771.416015625 ug/L 
  Cluster aquifer storage: 2.9927919 
  Cluster mass: 373.939843786862 kg 
Cluster 135 
  Sum of surface concentrations: 103.31383319199 ug/L 
  Cluster aquifer storage: 3.7341406 
  Cluster mass: 0.122725409391036 kg 
Cluster 136 
  Sum of surface concentrations: 35.0153058767318 ug/L 
  Cluster aquifer storage: 3.4519362 
  Cluster mass: 0.0384508577960212 kg 
done 
Total Pollutant Mass in West Coast Basin: 2699.35 kg 

Figure 14. This figure illustrates the last few lines of Python Shell window output for the 
Mass Output code when run on PCE. It includes properties of each cluster, which are 
outputted into the table as well, and a total mass estimate for the basin.   
 
 

Figures 15 through 18 show the mass distribution of each of the four pollutants 
throughout the West Coast Basin. Not all clusters factored into the mass calculation for a given 
pollutant, as the code required that the cluster have at least 8 points and that the average cluster 
concentration be greater than 0.1 g/L to execute kriging. The cluster shape depicted in Figures 
15 through 18 does not impact final mass calculation. The polygon file is simply used to 
illustrate the amount of mass determined to be within the cluster.   
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Figure 15. A mass prediction map for PCE in the West Basin. 1302 well points were 
contained in 88 clusters containing PCE samples, and the masses of 27 clusters were summed for 
a total of 2699 kilograms.  
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Figure 16.  A mass prediction map for TCE in the West Basin. Though 1289 well points were 
contained in 86 clusters containing TCE samples, the masses of 29 clusters were summed for a 
total of 7,657 kilograms.  
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Figure 17. A mass prediction map for chloroform in the West Basin. Of the 85 clusters that 
sampled for chloroform, the masses of only 9 clusters were determined to be significant by the 
code and summed for a total of 5,102 kilograms.  
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Figure 18. A mass prediction map for MTBE in the West Basin. Of the 2193 well points 
sampling for MTBE across 111 clusters, the masses of 47 clusters were summed for a total of 
11,872 kilograms.  
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7. DISCUSSION 
 

7.1 NON-DETECT TREATMENT: KEEPING NON-DETECT DATA OR USING THE ½-
MDL METHOD  
 Figure 8 from the Results section demonstrates that little difference existed at a test site 
within the West Basin when switching non-detect values in the model to ½-MDL values. This 
result suggested that the final mass estimate might not be meaningfully impacted by leaving non-
detects in ROS-ineligible clusters as zero values instead of changing them to half-MDL values. 
In the interest of meeting project deadlines, an executive decision was made to leave non-ROS 
treated zeroes as they were. 

While this lack of difference is pronounced, and despite the fact that the ½-MDL method 
introduces external data, it was decided that MDLs should be sought out when possible in future 
mass estimate calculations. When ROS is not appropriate for a cluster, using half of an MDL is 
preferable to leaving a zero value. Given that there exist few differences between keeping the 
zeroes and using a fraction of the MDL, giving the well-point an actual value would probably 
better represent the reality of scarce, but existent, contamination. But because the process of 
data-mining MDL values for each well is time consuming, the option of including half-MDLs in 
the analysis was not pursued.    
 

7.2 SELECTION OF A MATHEMATICAL INTERPOLATION MODEL TYPE 
As shown in the Results section’s Table 6, the k-bessel model type proved to be the most 

consistent and accurate model type for the test site, as it performed well in each of the three 
major measures of error: mean standardized error, RMSE and RMSSE. Of the 10 model types 
run, k-bessel boasted the RMSSE second-closest to a value of 1 and the third-lowest RMSE. It 
also had a mean standardized error that was the second-closest to zero. The hole effect model 
type was more accurate than k-bessel by every measure but average standardized error. But with 
an average standardized error nearly three times that of any other model type, it was decided that 
hole effect would not be used.    

The k-bessel kriging model was run on the first contaminant, PCE, but in the process of 
writing a script to automate the kriging process, a more easily programmed model type called 
Empirical Bayesian Kriging, or EBK, was discovered. According to ESRI (2012), this model 
type is considered among the most accurate for spatial interpolation data, with a mean error an 
entire magnitude better than the other models, a high standardized error, less than half the RMSE 
of other models, and the lowest average standard error by far.  
 

7.3 CALCULATED VOC MASSES AND THEIR IMPLICATIONS  
While the lack of comparison to mass estimates from other West Basin studies means that 

the prediction values of this project mean little, the thin distribution of mass contamination 
among clusters suggest the utility of this model in setting remediation priorities. The total mass 
of each of the four contaminants can mostly be attributed to just a few clusters.  
 Chloroform presents the most drastic example of such a small mass distribution. With 
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5078 of the 5102 kilograms of total mass centered around a single cluster, over 99 percent of the 
predicted mass for that contaminant is contained in one group of well points.  

Similarly, 92 percent of PCE mass was traced to 2 of 27 clusters sampling for that 
contaminant, while about 86 percent of TCE mass was accounted for by 3 of 29 clusters.  
A similar mass distribution among clusters is seen for MTBE. Three clusters’ combined mass 
totals 86 percent of the West Basin’s mass for that VOC. Refer to Appendix F for details on 
these calculations.  
 With this kind of information at their disposal, regulatory agencies may be able to 
address a considerable amount of pollution by targeting major inputs instead of any given cluster 
of contamination in the West Coast Basin.  

7.4 COMPARISON TO 2013 UCLA MODEL FOR PCE  
 Burke et al. (2013) generated a model that yielded a PCE estimate of West Coast Basin-
wide 4383 kilograms. The mass prediction of this study is nearly 1700 kilograms smaller than 
that of Burke et al., (2013) despite plume heights in this study reaching as far as 1000 feet 
underground, versus the Burke et al. volume integration over just 20 feet (2013). The conditions 
required for the automated kriging technique may explain some of the disparity in masses 
between the two projects, as many clusters were excluded from the analysis because of failure to 
meet the requirements for minimum average concentration requirement or well point count.  

7.5 EXPECTED SIGNIFICANCE  
 A project such as this may be impactful for regulatory purposes because of how 
streamlined it makes the process of determining groundwater VOC mass within a given area. 
The automated kriging script combines GeoTracker GAMA and WRD data to make for an 
efficient means for regulators to determine where hot spots of pollution may be occurring within 
a basin. These tools could thus provide an opportunity for the better planning, coordination and 
priority-setting at the heart of efforts like GAMA.  

This model can be run multiple times with consistent results, and, through the use of the 
kriging code, instantly turn concentration data from GeoTracker into mass. New datasets can be 
used, allowing for monitoring of progress over time, which can be difficult to do with 
concentration-based regulation.  
 Data such as that produced by this project helps to set a foundation for groundwater 
regulation that can examine contamination on a regional, as opposed to just a point-source, level. 
With agencies able to get a better idea of what inputs will cause excess pollution, mass-based 
calculations are more conducive to assessing the contamination of larger areas.  
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7.5-a Application Beyond the West Coast Basin  

 The WRD manages groundwater for both the West and Central sections of the Los 
Angeles Groundwater Basin, so that agency would likely have aquifer data of similar quality for 
both regions. Little may change in running the model on the Central Basin, as that basin and this 
project’s study area mostly have unconsolidated soil. It can therefore be expected that properties 
of soil and its interactions with VOCs would be similar between the two regions, as well as 
among other locations with similar soil profiles. Differences in aquifer height may arise in that 
the West Coast Basin is mostly confined (with Layer 1 non-existent), while the Central Coast 
Basin is mostly unconfined (with Layer 1 present). But the model’s calculation of aquifer height 
can be adjusted to accommodate that change when analyzing the Central Basin.  

The assumption of unconsolidated soil probably would not hold for many other locations 
throughout the rest of the nation, and so major changes related to the calculation of aquifer 
storage and z-coefficients may be expected. Determination of aquifer depth may also change as 
studies get away from Los Angeles, as different basins throughout the country figure to have 
entirely different layer traits that cannot be accounted for in the current model. For instance, 
Layers 3 and 4 were entirely ignored in this study’s calculations, a choice that may well not hold 
elsewhere. Other regions throughout the nation are also going to have different soil profiles and 
rock formations, as well as groundwater flow and recharge.  

GeoTracker GAMA contains well data for that spans the whole of California, so this 
model can work within the state provided that one can find similar aquifer data for the 
calculation of pollutant volume. Agencies with data like that of the WRD may be easier to find in 
locations — like counties the Central Valley — that mostly rely on non-local water sources. 
Such water-starved regions could be expected to have more motivation to look into and 
characterize groundwater resources.  

7.6 FUTURE DIRECTIONS  

7.6-a Incorporating Residual Contamination into Mass Calculations  

This project’s model only calculates the amount of contaminants within groundwater, 
since the client only requested as much. But in reality, considerable sources of pollutants in the 
subsurface environment are created when contaminants, especially solvents like PCE and TCE, 
encounter layers of soil and rock that are of low permeability. Pollutant accumulates in a pool 
above the groundwater and over time contaminants are fed further downward into groundwater, 
complicating remediation efforts by requiring additional inspection of soil, as opposed to just 
water. Residual contamination was not included in the final calculations because of the limited 
knowledge concerning the amount of air in a given soil parcel and the effect of gaseous behavior 
on mass calculation within the soil. Improved mass estimate models would incorporate both 
groundwater and residual data, such as to inform the creation of more thorough remediation 
efforts.  

7.6-b Considerations of Pollutant Fate and Transport 

A thorough understanding of VOC fate and transport, including biodegradation, was not 
part of the project, given our client’s instructions and our lack of expertise in accounting for such 
processes for even just a few contaminants. Considerations of the chemical environment and 
microbial community required to achieve differing rates of biodegradation would make for a 
more accurate model, and may take on the form of additional coefficients within Eq. 1. An early 



Page 40 of 44 

 

concept idea for the model was to generalize entire VOC groups, such as chlorinated solvents, 
according to the behavior of an indicator contaminant or two. But generalizing to even that level 
proved to be beyond the scope of the literature review and project deadline, and so the mass 
estimation model does not include any alterations for different kinds of contaminants.  

7.6-c Factoring in Dynamic Hydrogeologic Processes  

The model does not account for how real-world changes in water volume over space and 
time alter pollutant plumes. In the original USGS model (Crawford et al., 2003), the aquitards 
were not implicitly modeled between the layers, making it a quasi-3D model (Johnson and 
Njuguna). The extent and direction of groundwater flow can change the distribution of a plume 
and thus any mass calculations relying on that distribution. Water recharge from the likes of 
precipitation and runoff can also alter the amount of water and contaminant held within a 
specific portion of an aquifer, and consequently plume volume calculations. The incorporation of 
true 3D programs would help greatly in building a model that more accurately represents the 
behavior of contaminant plumes.  

7.6-d Additions to GeoTracker  

There exists the possibility that a policymaker using the tools provided by this project 
will experience some of the same database inefficiencies experienced during the course of this 
study, and be motivated to address those issues.  

The database provides all inputs for the model, so any effort made to improve extraction 
of meaningful data from it makes the model more efficient and accurate. An especially helpful 
change in GeoTracker would be a column on the downloadable spreadsheet that lists the 
laboratory MDLs for a given contaminant and well. Such an addition could provide  
a better understanding of the mass-estimating model’s relative error, under the assumption that a 
non-detect value equates to a zero concentration at that well point.  

 As is, many steps are required to access screen length information from the database. A 
more organized display of that data could be an appearance as another column on the spreadsheet 
for a downloaded contaminant. That feature would inform users on the distance a VOC travels 
underground by providing an understanding of the concentration at a particular depth relative to 
the depth-concentration profiles built in the model, allowing for refinement of the z-coefficient 
and thus improved generalization of z-axis changes.  

7.6-e Visualize Model Results in a Way the Public Can Readily Understand  

A suggestion made by the client at a meeting on June 12th, 2014 was to develop public 
outreach strategies that bring attention to groundwater contamination issues. One involved taking 
the massive pollutant estimations we generated, on the order of a million kilograms, and equating 
that mass of contaminant to a source a general audience may be familiar with, such as a battery.  

Expansions of the LARWQCB’s ideas include mapping out remediation costs of certain 
areas and delving into VOC studies that give people an idea as to how risk for different adverse 
health effects, such as cancer, increases with certain degrees exposure.  
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8. CONCLUSION 
This study has produced a tool with the potential to be useful in allowing agencies to 

make more informed decisions about remediation and monitoring efforts of VOCs. The 
LARWQCB can thus better prioritize limited resources toward the most problematic areas and 
able to remediate more effectively. 

Though much can still be learned about VOC exposure, these contaminants can 
negatively impact human health and so their presence in groundwater aquifers nonetheless 
hinders the Los Angeles Basin’s ability to maximize its use of that water source.  

In a region so reliant on distant water sources and susceptible to drought, the inability to 
expand a drinking water supply portfolio poses a major challenge to those charged with securing 
potable water for Los Angeles. 
 Most decisions regarding groundwater are still based on contaminant concentrations. 
Groundwater pollution management programs can become more effective by considering mass 
fluxes. A mass-based management considers variance caused by spatially unique hydrologic 
conditions. It also allows a kinematic approach and introduces dimensional aspects to plume 
monitoring. Mass calculation can be compared across sampling times to estimate the source and 
path of different contaminants. The data could then be used to deduce how chemical interactions 
between contaminants impact net flow and biodegradation. Regulations based on total mass 
allow water control programs to identify areas of high concern to prioritize the finite resources 
available for groundwater monitoring and risk assessment. 
 It should be noted that regional groundwater contamination models inherently contain a 
degree of uncertainty due to the reality that several complex underground phenomena influence 
the transport and fate of contaminants and parameter inputs into models rely upon measurements 
from discrete sampling points. While precise calculations of contaminant mass in smaller areas 
with limited data is challenging, the model presented here is well-suited for making reasonable 
estimates of total contaminant mass over the scale of regional water basins for the stated goal of 
informing the public, regulatory agencies and policy decisions. 
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COMPONENTS OF THE GAMA PROGRAM 
APPENDIX A 

(ADAPTED FROM BORKOVICH, 2012) 
 
GAMA Component Function 
1. Priority Basin 
Project (PBP) 

Assess the public water supply quality of over 100 basins 
throughout California by comparing observed pollutant 
concentrations in untreated groundwater with drinking water 
benchmarks. 

2. GeoTracker 
GAMA 

Provides a free-to-access interactive map and online database 
of detection data from 200,000-plus California wells and over 
100 million overall analytical results. Contributors include the 
Department of Water Resources, the Department of Pesticide 
Regulation, Special Studies Projects between GAMA and the 
Lawrence Livermore National Laboratory (LLNL). GeoTracker 
can be accessed here: 
http://geotracker.waterboards.ca.gov/gama/. 

3. Domestic Well 
Projects 

Examine the water quality of domestic, private well waters that 
typically serve single, home-owning families. This kind of 
water quality is not regulated by the California state 
government. Sampling effort targets include bacteria, minerals, 
and organic contaminants. Benzene, toluene, PCE, and MTBE 
are among the organic contaminants tested for by these 
projects. Participation is free and voluntary. Projects occur on a 
county-by-county basis, with Monterey, San Diego, Tulare, 
Tehama, El Dorado and Yuba counties studied as of 2011. The 
number of wells examined in each county currently ranges 
from 79 to 398. A description of results can be found here: 
http://www.waterboards.ca.gov/gama/domestic_well.shtml. 

4. Special Studies 
Project 

The Lawrence Livermore Lab conducts research on a variety of 
groundwater topics. Seven studies have been completed so far. 
Nitrate occurrence sources, management and fate and transport 
have been examined in the Llagas and Chico Basins, as well as 
in Orange County, Livermore, and Gilroy. Areas irrigated by 
recycled water and the effects of septic systems on shallow 
groundwater have also been studied. Current projects include 
researching groundwater recharge, developing extraction and 
collection tools for dissolved gases in groundwater samples, 
and establishing a biological assay conducted in fish to identify 
endocrine-disrupting chemicals. Completed and ongoing 
Special Studies Projects are summarized at the following 
website: 
http://www.waterboards.ca.gov/gama/special_studies.shtml. 
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ESSENTIAL ROS COMMANDS IN R 
APPENDIX B 

 
B.1 Removal of repeating measurements in R  
 
PCE <- read.table("TCE_CLST.txt", header = TRUE)  
# Import data into R 
PCE$Well_ID_Name <- factor(PCE$WELLID):factor(PCE$WELLNAME)  
# To combine the two categorical factors in one column 
aggrPCE <- aggregate(PCE["RESULT"], by = list(PCE$Well_ID_Name), FUN = mean, na.rm = TRUE)  
names(aggrPCE)[names(aggrPCE) == "Group.1"] <- "Well_ID_Name" names(aggrPCE)[names(aggrPCE) == "RESULT"] <- 
"aveResult" PCE2 <- merge(PCE, aggrPCE, by = "Well_ID_Name") head(PCE2) 
# Take average of repeating measurements result. Replace “result” with average and leave only one of the repeating 
measurements (delete the rest) 
PCE3 <- PCE2[!duplicated(PCE2$Well_ID_Name), ]  
# remove the duplicated measurements  
 
B.2 Running an ROS test in R  
# IF there are less than 3 observations (>0), keep the observation and replace non-detect with half MDL or 0 
# Add a new column to MD3, '1' # for positive result, '0' for Non-detect; PCE3$Calculate[PCE3$aveResult > 0] <- 1 
PCE3$Calculate[PCE3$aveResult <= 0] <- 0  
# Then, add the MD3$Calculate together for each group. This represents # number of positive measurements for each group  
PCE3ROS1 <- aggregate(PCE3["Calculate"], by = list(PCE3$ID), FUN = sum, na.rm = TRUE) 
 
names(PCE3ROS1)[names(PCE3ROS1) == "Group.1"] <- "ID" names(PCE3ROS1)[names(PCE3ROS1) == "Calculate"] <- 
"Observation"  
# Merge the sheet back to MD3  
PCE3ROS2 <- merge(PCE3ROS1, PCE3, by = "ID")  
# Created an indicator for whether to use MDL substitution PCE3ROS2$MDLtest[PCE3ROS2$Observation >= 3] <- FALSE 
PCE3ROS2$MDLtest[PCE3ROS2$Observation < 3] <- TRUE  
# Now the 'MDLtest' indicates which rows should be substituted with the Half # the MDL or 0 because there are <3 Positive 
Observations with a cluster group ID PCE3ROS2$INDICATOR[PCE3ROS2$aveResult > 0] <- FALSE 
PCE3ROS2$INDICATOR[PCE3ROS2$aveResult <= 0] <- TRUE  
Group_with_concored <- as.data.frame(table(PCE3ROS2$ID[PCE3ROS2$MDLtest == FALSE & PCE3ROS2$INDICATOR 
== TRUE])) names(Group_with_concored)[names(Group_with_concored) == "Var1"] <- "ID" 
names(Group_with_concored)[names(Group_with_concored) == "Freq"] <- "no.censored" # Group ID and number of 
observation that is non-detected Group_with_concored 
Group_with_average <- aggregate(PCE3ROS2["aveResult"], by = list(PCE3ROS2$ID), FUN = mean) Group_with_average 
names(Group_with_average)[names(Group_with_average) == "Group.1"] <- "ID" # Merge them together ROStest1 <- 
merge(Group_with_average, Group_with_concored, by = "ID") ROStest <- merge(ROStest1, obs, by = "ID") 
 
B.3 Running ROS in a loop in R  
Ros = c()  
x = ROStest$ID  
for (i in 1:28) { Ros[i] <- mean(ros(PCE3ROS2$aveResult[PCE3ROS2$ID == x[i]], PCE3ROS2$INDICATOR[PCE3ROS2$ID 
== x[i]], forwardT = "log", reverseT = "exp")) } 
# Run ROS for each group that passed the test 
 
B.4  Calculation of an ROS Substitution Value in R  
ROStest$ROSaverage = Ros ROStest$ROS = ROStest$ROSaverage - ROStest$aveResult ROStest$sub = (ROStest$ROS * 
ROStest$Count_of_Obs)/ROStest$no.censored 
 
  



 

 

USING R TO FIND INTEGRALS FOR  
APPENDIX C 

MAXIMUM CONCENTRATION AND DEPTH VERSUS CONCENTRATION  
IN DETERMINING A CONTAMINANT’S Z-COEFFICIENT 

 
Pcedata <- read.delim("~/Desktop/Practice_data/Vertical_estimation/Pcedata.dbf.txt") 
# read data 
Pcedata$sum = 0 
data = seq(from = 0, to = 245, by = 1) 
PCE = data.frame(data) 
# creat a date frame for depth 
PCE$sum = 0 
PCE$count = 0 
for (i in 1:245) { 
    for (j in 1:27) { 
        PCE$sum[i][PCE$data[i] <= Pcedata$min[j] & PCE$data[i] >= Pcedata$max[j]] = PCE$sum[i] +  
            Pcedata$con[j] 
    } 
} 
for (i in 1:245) { 
    for (j in 1:27) { 
        PCE$count[i][PCE$data[i] <= Pcedata$min[j] & PCE$data[i] >= Pcedata$max[j]] = PCE$count[i] +  
            1 
    } 
} 
# test and add overlap up together 
PCE$concentration = PCE$sum/PCE$count 
PCE$concentration[245] = 0 
# calculate the concentration by dividing sum by number of value added 
x = c(PCE$data) 
y = c(PCE$concentration) 
# assign to x,y for graphing and curve estimation 
fit4 <- lm(y ~ poly(x, 4, raw = TRUE)) 
xx <- seq(0, 250, length = 100) 
# 4th order estimation 
plot(x, y) 
lines(xx, predict(fit4, data.frame(x = xx)), col = "purple") 
summary(fit4) 
##  
## Call: 
## lm(formula = y ~ poly(x, 4, raw = TRUE)) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -0.9630 -0.3672 -0.0012  0.2494  1.6637  
##  
## Coefficients: 
##                          Estimate Std. Error t value Pr(>|t|)     
## (Intercept)              3.01e+00   1.35e-01   22.31  < 2e-16 *** 
## poly(x, 4, raw = TRUE)1 -5.11e-02   7.70e-03   -6.64  2.1e-10 *** 
## poly(x, 4, raw = TRUE)2  3.19e-04   1.29e-04    2.48   0.0139 *   
## poly(x, 4, raw = TRUE)3  5.62e-07   7.94e-07    0.71   0.4796     
## poly(x, 4, raw = TRUE)4 -4.72e-09   1.61e-09   -2.92   0.0038 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.433 on 240 degrees of freedom 



 

 

##   (1 observation deleted due to missingness) 
## Multiple R-squared:  0.615,  Adjusted R-squared:  0.609  
## F-statistic: 95.8 on 4 and 240 DF,  p-value: <2e-16 
library("MESS", lib.loc = "/Library/Frameworks/R.framework/Versions/3.0/Resources/library") 
## Loading required package: geepack 

 

# load the package for curve integrating 
yy = predict(fit4, data.frame(x = xx)) 
max(yy) 
## [1] 3.012 
max(yy) * 250 
## [1] 753.1 
# maximum area 
auc(xx, yy, from = 0, to = 250) 
## [1] 443.4 
# area according to 4th order estimation 
auc(x, y, from = 0, to = 244) 
## [1] 439.7 
# area according to data 
auc(xx, yy, from = 0, to = 250)/(max(yy) * 250) 
## [1] 0.5887 
# fraction 
 
 
  



 

 

SUMMARY OF PRIORITY BASIN REPORT INFORMATION  
APPENDIX D 

ON FOUR VOCS OF INTEREST  
(ADAPTED FROM BELITZ ET AL., 2012) 

 

Contaminant Report Information 
1. Perchloroethylene 
(PCE) 

Has a detection frequency of 25 percent, appearing at higher 
aquifer-scale proportions in 1.1 percent of the primary aquifer 
system, and at moderate proportions in 5.5 percent of the 
primary aquifer system. 

2. Trichloroethylene 
(TCE) 

Has a detection frequency of 29 percent, appearing at higher 
aquifer-scale proportions in 1.7 percent of the primary aquifer 
system, and at moderate proportions in 13 percent of the primary 
aquifer system. 

3. Chloroform  Has a detection frequency of 45 percent. It was the most 
commonly detected VOC in 2001 study of LA Basin, 2003 
study, national survey of groundwater VOCs. 

4. Methyl tert-butyl ether 
(MTBE) 

Found at moderate relative-concentrations in 0.4 percent of 
primary aquifer system. Detected in more than 10 percent of grid 
wells. 

  
  Groundwater quality was viewed in relationship to relative-concentration, a ratio of a 
sample concentration to a state, Federal or non-regulatory benchmark. Organic pollutants had 
three tiers of relative-concentrations:  

1. Low (a relative-concentration less than or equal to 0.1), 
2. Moderate (a relative-concentration greater than 0.1, but less than or equal to 1) 
3. High (a relative-concentration greater than 1). 

Aquifer scale-proportion, the percentage of the primary aquifer system’s wells showing a 
high relative-concentration, was included in the analysis to help characterize the spread of a 
pollutant of interest. 
 

 
  



 

 

CREATION, USE AND IMPLICATIONS OF AUTOMATED VOC 
MASS ESTIMATE METHOD IN LOS ANGELES WEST COAST 

BASIN  
 

ESTIMATING THE MASS OF VOCS WITHIN THE  

APPENDIX E 

WEST COAST LOS ANGELES GROUNDWATER BASIN 
Maya Bruguera and Jeffrey Tsang 
Evan Lyons, Dr. Yongwei Sheng 

Geography 173: GIS Programming and Development 
 

I. Problem 
Over the past two centuries, industry has boomed in Los Angeles.  Though this has 

brought the region’s economy great benefits, it has also brought the region’s groundwater 
numerous contaminants.  One group of contaminants known to be harmful to human health, are 
volatile organic compounds, or VOCs.  Because they negatively impact human health, the 
presence of VOCs in groundwater aquifers prevents the region from using this water resource to 
supply residents with potable water.  In an area like Los Angeles where drought is ongoing and 
expected to persist throughout the next decade, the inability to take advantage of local 
groundwater resources to fortify the region’s water supply portfolio poses a challenge to those in 
charge of securing potable water for Los Angeles.   
 
II. Solution 

Because of the existing contamination and need to explore local groundwater for water 
supply, the Los Angeles Regional Water Quality Control Board (LARWQCB), the agency which 
regulates groundwater pollution under the Clean Water Act, has begun looking into this 
contamination.  In order to clean up the contamination and assess the risk to human health, the 
Board has set the goal of quantifying the mass of VOCs within the West Coast Los Angeles 
Basin.  To do this, the LARWQCB has contracted out and asked a UCLA Senior Environmental 
Science Practicum team to conduct this mass analysis.   

Over the past two years, practicum teams investigated the nature of groundwater 
contamination in the West Coast Basin and designed a methodology for estimating mass.  This 
methodology involves a number of steps.   

1. Downloading geospatial information on groundwater VOC concentrations from the 
state’s Groundwater Ambient Monitoring and Assessment (GAMA) GeoTracker 
database for the groundwater basin.  This data is downloaded as a csv.   

2. Importing the csv of concentration data into ArcMap as an XY layer 
3. Converting all non-detect values (aka zero-values) to the minimum positive value 

allowed by ArcMap (0.00001) to enable input into kriging 
4. Grouping this data into clusters based on spatial proximity to increase the accuracy of 

the Kriging spatial interpolation 



 

 

5. Performing the Kriging spatial interpolation on each cluster of the data to create a 
surface VOC concentration raster for the polluted regions within the basin  

6. Multiplying each cluster by the aquifer depth and storage coefficient  (aka the area of 
the cluster as determined by the latitudinal and longitudinal extent of the spatial 
interpolation raster pixels, multiplied by the depth of the aquifer as determined by a 
summation of the depth of all aquifer layers, multiplied by the storage coefficient 
which is representative of the volume of the aquifer actually filled with water as 
opposed to by sediment), and by the mass coefficient which accounts for the 
attenuation of concentration with depth, to give total pollutant mass in the cluster 

7. Creating a table which includes data from each cluster including cluster ID, total 
concentration within the cluster, the number of cells within the cluster, the aquifer 
storage value within the cluster (depth times storage coefficient), and the total 
pollutant mass within the cluster 

There is a large number of VOCs of interest in the West Coast Basin and a just-as-large 
number of steps involved in calculating the mass for each pollutant, (including conducting 
Kriging separately for each of the 153 clusters and multiplying each of the clusters separately by 
the aquifer depth and storage).  Because of this, it is not time efficient to conduct the mass 
estimation by hand for each pollutant in ArcMap.  Therefore, we created a tool and a code which 
go together to take the csv of concentrations of a given pollutant, a cluster polygon file, an 
aquifer storage raster, and a pollutant mass coefficient as inputs, and outputs Kriged 
concentration rasters for each cluster, and a table which characteristics of each cluster, including  
total number of well monitoring points, number of prediction cells (meaning area), a mass output 
value, and the sum of the concentration values of all pixels within the cluster.  Together, the 
Clustered Kriging tool and Mass Output code enable anyone to download pollutant data from 
GAMA GeoTracker, use the cluster polygon file, aquifer volume raster, and data on mass 
coefficients as inputs as the model, and calculate the mass of any pollutant on the GAMA 
GeoTracker database within the Los Angeles West Coast Basin.   
 
III. Code Design 

The following sample code encompasses all steps of the mass calculation, using 
tetrachloroethene (PCE) data as the sample pollutant input.   

The first portion of the code corresponds to Step 2 in the mass calculation methodology, 
where the pollutant concentration csv is imported into ArcMap as a point file.  This involves 
taking the GAMA GeoTracker pollutant concentration csv and importing it to ArcMap as an XY 
layer based on the x- and y-coordinates.  This step creates and saves a point layer in the WGS 
1984 projection which contains data on pollutant concentration at each well point in the field 
aveResult.  The code then converts this layer to a shapefile.  (Figure 1) In the final code used for 
the tool, user can specify the pollutant concentration csv as an input, which in the code is 
substituted for the variable in_Table.   
  



 

 

 

#Setting the workspace 
import arcpy 
folder_path = r"F:\Script_Data" 
arcpy.env.workspace = folder_path 
arcpy.env.overwriteOutput = True 
 
#Create PCE XY Shapefile from GAMA Geotracker pollutant csv 
try: 
    # Set the local variables 
    in_Table = "PCE_ROS.csv" 
    x_coords = "LONGITUDE" 
    y_coords = "LATITUDE" 
     
    out_Layer = "PCE_layer" 
    saved_Layer = "PCE.lyr" 
  
    # Set the spatial reference 
    spRef = r"Coordinate Systems\Projected Coordinate Systems\World\WGS 1984.prj" 
  
    # Make the XY event layer... 
    arcpy.MakeXYEventLayer_management(in_Table, x_coords, y_coords, out_Layer, spRef) 
 
    # Save to a layer file 
    arcpy.SaveToLayerFile_management(out_Layer, saved_Layer) 
 
    #Convert to a shapfile 
    inFeatures = ["PCE.lyr"] 
 
    arcpy.FeatureClassToShapefile_conversion(inFeatures, folder_path) 
 
except: 
    # If an error occurred print the message to the screen 
    print arcpy.GetMessages() 
print "done" 
 

Figure 1. Code which sets environmental variables and imports the pollutant concentration csv into ArcMap as an 
XY point layer, saves the layer, and exports it to a shapefile.  If there are any errors, the code prints the error 
messages.   
 
 

The following section of the code corresponds to Step 3 of the methodology, where all 
non-detect concentration values (aka all well concentration result values of zero) are converted to 
0.00001, to allow the data to be inputted into the Kriging (Kriging does not except any zero 
values).  The code takes the pollutant XY shapefile that was just created, creates an update 
cursor, and loops through each well point, replacing any concentration result values that are 
zeros with 0.00001 (Figure 2).   
  



 

 

 

 ### The resulting PCE file 
fc = "PCE_layer.shp" 
 
###Clusters 
clst = "clusters.shp" 
PCE_clust = "PCE_clust.shp" 
 
### Create update cursor  
rows = arcpy.UpdateCursor(fc) 
for row in rows: 
    if row.aveResult ==0: 
        row.aveResult = 0.00001 # Change the value in value field 
        rows.updateRow(row) 
 
 
del rows #delete cursor 
del row #delete variable 
 
print "Zero-values converted to 1e-6" 
 

Figure 2. Code which converts pollutant concentration non-detects (zero-values) to smallest possible value 
(0.00001)  
 

Next comes Step 4, where the XY point file is joined to the input polygon cluster file to 
assign each point a cluster ID (Figure 3).  This enables Kriging to be performed on each 
individual cluster.   

 

###Spatially join XY pollutant points to cluster polygon file to assign cluster ID 
 
arcpy.SpatialJoin_analysis (fc, clst, PCE_clust, "", "", "", "", "", "") 
 
print "Well points clustered" 

Figure 3. Code that assigns a cluster ID to each point.  
 
 

Step 5 follows, where each cluster of the XY pollutant point file is Kriged using the 
Geostatistical Analyst Empirical Bayesian Kriging function.  In the code, pre-Kriging 
housekeeping is done, including checking out the Geostatistical Analyst extension, converting 
the shapefile to a feature layer, and defining the variable clstID  as the attribute that defines the 
cluster ID (Figure 4).  The Kriging variables are then set, where cell size is set to 10 meters, the 
data transformation is set to an empirical one, the maximum number of points per semivariogram 
is set to 20, the maximum number of semivariograms to be calculated is set to 300, the maximum 
radius is set to 3000 meters (based on the diameter of the largest cluster), the Kriging type is set 
to smooth (meaning a surface is created only for the areas surrounding the points, not for a larger 
area),  and the output type is set to prediction meaning the that output raster is a prediction of 
concentration based on the input data points (as opposed to error, etc.) (Figure 4).   
  



 

 

 

#Check out Geostatistical Extension Liscence 
arcpy.CheckOutExtension("GeoStats") 
 
#################### Input & Output Variables ############################### 
#Inputs 
saved_Layer = "PCE_clust.shp" 
clstID = "ID" 
#Outputs 
PCE_clst_no0s = "PCE_Layer" 
 
#################### Create Feature Layer ########################################### 
#Make a feature layer 
arcpy.MakeFeatureLayer_management (saved_Layer, PCE_clst_no0s) 
 
#################### Set Kriging Variables ###################################### 
#Set local variables 
#inPointFeatures = PCE_clst_no0s 
zField = "aveResult" 
cellSize = 10.0 
transformation = "EMPIRICAL" 
maxLocalPoints = 20 
overlapFactor = 0.5 
numberSemivariograms = 300 
 
# Set variables for search neighborhood 
radius = 3000 
    #Note: For PCE, largest side of largest cluster polygon is 3000 m 
    #Largest cluster has 86 points 
    #Average cluster has 6.85 points (based on mean count in spatial join of points to 
cluster polygons) 
smooth = 0.0 
searchNeighbourhood = arcpy.SearchNeighborhoodSmoothCircular(radius, smooth) 
outputType = "PREDICTION" 
quantileValue = "" 
thresholdType = "" 
probabilityThreshold = "" 

Figure 4.  Pre-Kriging housekeeping (check out Geostatistical Analyst and convert shapefile to layer file) and 
setting Kriging variables.  
 

After setting the Kriging variables, the code runs Kriging for each cluster.  Because a 
number of clusters contain only non-detects, and Kriging will not work when this occurs, we 
created a mechanism such the code will only attempt to execute Kriging on clusters which have 
enough non-zero values.  To do this, the code selects the points within the cluster and creates a 
temporary table and populates it with the mean concentration result of the entire cluster.  It then 
creates a search cursor which accesses the table and if the average concentration result exceeds 
0.1, it performs kriging on the cluster.  The final output of this step is a a Kriging raster of each 
cluster which has enough non-zero points for Kriging to be performed (Figure 5).  This 
concludes with the portion of the code in the first tool, Clustered Kriging.   
  



 

 

 

 
########################### For each cluster, run Kriging ######################### 
 
#Run kriging 
for clst in range(1,153): 
 arcpy.SelectLayerByAttribute_management (PCE_clst_no0s, "NEW_SELECTION", '"ID" = ' + 
str(clst)) 
 result = int(arcpy.GetCount_management(PCE_clst_no0s).getOutput(0)) 
 krigedLayer = "kriged"+str(clst)+".TIF" 
 krigedRaster = "kriged"+str(clst)+".TIF" 
 table = "table1" 
 arcpy.CreateTable_management("in_memory", "table1") 
 arcpy.Statistics_analysis(PCE_clst_no0s, "table1", [["aveResult", "MEAN"]]) 
 search = arcpy.SearchCursor ("table1") 
 row = search.next() 
 if result > 0: 
     print str(clst)+", "+str(result)+", "+str(row.MEAN_AVERESULT) 
     clst_list.append(str(clst)+", "+str(result)+", "+str(row.MEAN_AVERESULT)) 
     if row.MEAN_AVERESULT > 0.1: 
         if result > 8: #8 chosen because must have enough data for EBK to run 
             #print "Cluster " + str(clst) + " has " + str(result) + " points" 

arcpy.EmpiricalBayesianKriging_ga(PCE_clst_no0s, zField, krigedLayer, 
krigedRaster, cellSize, transformation, maxLocalPoints, overlapFactor, 
numberSemivariograms, searchNeighbourhood, outputType, quantileValue, 
thresholdType, probabilityThreshold) 
print "Kriged" 

 del result, row, search, table 
print "Done kriging all clusters" 
print clst_list 
 
 

Figure 5. Kriging is run on each cluster whose mean exceeds 0.1, outputting a raster for each cluster.  
 

The entire second portion of the tool is dedicated to Steps 6 and 7 of the mass calculation 
methodology, where mass is actually calculated and information on each cluster is outputted into 
a table.  This part of the tool is a code to be run in IDLE instead of a toolbox in ArcMap, as the 
functionality (in terms of amount of time to execute and magnitude of individual values which 
can be processed) is available in IDLE but was found to be difficult and time inefficient in 
ArcMap.   

In this portion of the code, first, the aquifer storage value is identified.  Because the 
aquifer storage cells are a half mile by half mile, while our kriged cluster raster cells are only 26 
meters by 26 meters, and oftentimes the entire cluster doesn’t even span an entire half mile, the 
raster cell was too large to conduct a raster calculator style multiplication of the kriged and 
aquifer storage rasters to calculate mass.  Instead, the centroid coordinates of each cluster were 
determined, and the aquifer storage layer value at that specific location was found, and used as 
the aquifer depth and storage value for the entire cluster.  Figure 6 illustrates the code that 
executed this process.   
  



 

 

 

######################### Setting the workspace ######################### 
import arcpy 
folder_path = r"F:\Script_Data" 
arcpy.env.workspace = folder_path 
arcpy.env.overwriteOutput = True 
 
######################### Get Cluster Centroid Coordinates ######################### 
 
#Define variable of cluster polygon file 
##USER SPECIFIED INPUT: Cluster shapefile 
#Example: "clusters.shp" 
clst = "clusters.shp" 
 
#Create search cursor to look through polygon file 
cluster_cursor = arcpy.SearchCursor(clst) 
 
#Lists 
clstID_list = list() 
clstCentXY_list = list() 
 
for clstG in cluster_cursor: 
 #Get geometry of cluster polygon centroids 
 clstGeom = clstG.Shape 
 clstCentX = clstGeom.centroid.X 
 clstCentY = clstGeom.centroid.Y 
     
 #Populate lists with cluster polygon IDs and centroid coordinates 
 clstID_list.append(clstG.ID) 
 clstCentXY_list.append(str(clstCentX)+" "+str(clstCentY)) 
 
del clstG 
 
#print "cluster ID list: " 
#print clstID_list 
#print "cluster centroid coordinate list: " 
#print clstCentXY_list 
 
######################### Get Aquifer Storage Value at Cluster Centroid Coordinates 
######################### 
#Create empty list for aquifer storage values 
AqStor_list = list() 
 
#USER SPECIFIED INPUT: aquifer storage raster 
storage = "storage_pm" 
 
#Populate list with values 
for i in clstCentXY_list: 
 #print i 
 storageVal = arcpy.GetCellValue_management(storage, i) 
 storageValInt = float(storageVal.getOutput(0)) 
 #print storageVal 
 AqStor_list.append(storageValInt) 
#print AqStor_list 
print "done" 

Figure 6. Cluster centroid coordinates were added to a list and accessed through the cluster polygon geometry.  
These coordinates were then used as inputs to the get the value of the aquifer storage at that specific point.   
 



 

 

The subsequent portion of the tool takes the kriging concentration data, aquifer depth and 
storage data, and multiplies them by the area of the kriged raster and other coefficients and unit 
conversions to produce a mass estimate of kilograms per cluster.  The code not only calculates 
pollutant mass for each cluster and outputs it printed in the IDLE window, but also generates a 
table (mass_table) which is populated with information about each cluster’s ID, total 
concentration value, aquifer depth and storage value.  Figure 7 illustrates the mass calculation 
and generation of the final mass table.   
############### Multiply Kriged Rasters by Aquifer Storage Volume ################### 
 
#For all kriged rasters, perform raster calculator 
rasterlist = arcpy.ListRasters('*', 'TIF') 
#Create empty list to add total mass of all clusters 
mass_list = list() 
#Create table for cluster concentration, cell number, and mass information 
##In tool, would be USER SPECIFIED mass output table 
mass_table = "Mass_Table" 
arcpy.CreateTable_management(folder_path, mass_table) 
#Create fields for cluster ID, total concentration, cell number, aq storage, and mass 
arcpy.AddField_management(mass_table, "Clust_ID", "DOUBLE") 
arcpy.AddField_management(mass_table, "Sum_Conc_ugL", "DOUBLE") 
arcpy.AddField_management(mass_table, "Num_Cells", "DOUBLE") 
arcpy.AddField_management(mass_table, "Aq_Storage", "DOUBLE") 
arcpy.AddField_management(mass_table, "Mass_kg", "DOUBLE") 
 
#Import numpy module 
import numpy 
#Create insert cursor to populate table 
 
for krigedRas in rasterlist: 
 #Determine cluster ID of kriged raster 
 num = krigedRas.index('d') 
 numP1 = num + 1 
 cluster = int(krigedRas[numP1:-4]) 
 print "Cluster "+str(cluster) 
     
 #Create array from kriged raster to get cell values 
 myArray = arcpy.RasterToNumPyArray(krigedRas) 
 #sum array rows to create array of total concentration value for each row 
 sum1 = sum(myArray) 
 #sum array of total row concentrations to get total concentration of kriged raster 
 sum2 = sum(sum1) 
 print "  Sum of surface concentrations: "+str(sum2)+" ug/L" 
     
 #Calculate number of cells in kriged area 
 kriged_width = len(myArray) 
 kriged_length = len(sum1) 
 kriged_cell_num = kriged_width*kriged_length 
 
 #Get aquifer storage cluster index 
 #Get index value of kriged raster cluster in list of cluster IDs 
 clusterID_index = int(clstID_list.index(cluster)) 
 #print "  Cluster ID List Index: "+str(clusterID_index) 
 #Get aquifer storage of indexed cluster 
 aqStor = AqStor_list[clusterID_index] 
 print "  Cluster aquifer storage: "+str(aqStor) 
 
 



 

 

 
#Calculate mass of cluster 
#Explanation of mass calculation: mass = concentration [ug/L] * aq storage w/ depth[m] * XY 
Cell area [m^2/cell] * # cells (kriged_cell_num from array calcs) [cell]* mass coefficient 
(unitless) * 1000 (cubic meters to liter conversion) [L/m^3] * 1/1000000000 (micrograms to 
kilograms conversion) [kg/ug] 
 #####in tool, would be USER INPUT MASS COEFFICIENT, as it varies by pollutant 
 mc = 0.642 
 mass = sum2*aqStor*22.26*22.26*kriged_cell_num*mc*1000/1000000/1000 
 print "  Cluster mass: "+str(mass)+" kg" 
 mass_list.append(mass) 
 
 #Update Table Rows 
 rows = arcpy.InsertCursor(mass_table) 
 row = rows.newRow() 
 row.Clust_ID = cluster 
 row.Sum_Conc_ugL = sum2 
 row.Num_Cells = kriged_cell_num 
 row.Aq_Storage = aqStor 
 row.Mass_kg = mass 
 rows.insertRow(row) 
     
 del rows, row, aqStor, clusterID_index, cluster, myArray 
print "done" 
 
#Sum list of mass by cluster to get total Basin Pollutant Mass 
tot_mass = sum(mass_list) 
print "Total Pollutant Mass in West Coast Basin: "+str(tot_mass)+" kg" 
 

Figure 7.  For each kriged cluster raster, arrays are used to calculate the total concentration per 
cluster and the total number of cells in each cluster. These values are then used along with the 
aquifer storage and mass coefficient to produce a mass estimate.  A table with all of this 
information is created and an insert cursor is used to populate it.   
 

The end of the python shell window output from this step appears as follow, including a 
final mass estimate for the basin.  (Figure 8) 
  



 

 

 

Cluster 147 
  Sum of surface concentrations: 3607.20375061 ug/L 
  Cluster aquifer storage: 3.9886036 
  Cluster mass: 823.8523862 kg 
Cluster 149 
  Sum of surface concentrations: 392771.416016 ug/L 
  Cluster aquifer storage: 4.0257821 
  Cluster mass: 1071408.50723 kg 
Cluster 152 
  Sum of surface concentrations: 103.313833192 ug/L 
  Cluster aquifer storage: 2.9076476 
  Cluster mass: 65.3644625966 kg 
done 
Total Pollutant Mass in West Coast Basin: 1670044.26144 kg 

Figure 8.  This figure illustrates the last few lines of Python Shell window output for the Mass Output code, 
including properties of each cluster (which are outputted into the table as well) and a total mass estimate for the 
basin.   
 

IV. Tool Functionalities 

The tool set builds on itself, as the Clustered 

Kriging tool produces a prediction surface 

concentration raster, and the Mass Output tool uses 

these generated kriging rasters to compute total mass.   

Outputs  

The Groundwater Pollutant Clustered Kriging 

outputs a shapefile of the pollutant points which have 

had non-detects transformed to 0.000001 and been assigned a cluster ID, and a concentration 

prediction raster of each cluster which was kriged.  Figure 6 (to the right) illustrates an example 

of the output kriged concentration rasters.   

When run in the IDLE Python shell, the Clustered Kriging code outputs a list, where each 

item includes a cluster’s cluster ID, number of well points it contains, and average pollutant 

concentration result.  This is advantageous because allows the user to see which clusters were not 

kriged and therefore will not be included in the total mass estimate, and why they were left out 



 

 

(as detailed by the EBK code, either there was not enough variance within the data as determined 

by the mean concentration having a value less than 0.1) or there were not enough data points 

within the cluster to conduct kriging (the minimum number required for the tool to work for all 

clusters was 8).  From the outputted kriged prediction rasters and the information on the data left 

out, the user can identify where surface pollutant concentration is highest and where it is 

monitored yet we lack enough data to accurately predict via kriging spatial interpolation.  This 

tool could be improved by outputting the cluster ID, well point count, and average pollutant 

concentration result information into a table, however we did not have enough time during this 

project to pursue this avenue.   

Regarding the functionality of the Mass Output code, it is advantageous as it provides 

spatial information on pollutant concentration and mass, enabling stakeholder parties to be aware 

of where groundwater pollution is most prevalent.    

 

V. User Manual 

Note: README.doc contains information on organization of data.   
 
1. Groundwater Pollution Clustered Kriging Tool 

User must specify five inputs and outputs including:  
Inputs 

Pollutant CSV: Pollutant data from GAMA GeoTracker, csv file 
Well Clusters: Input well cluster polygon file 

Outputs 
Pollutant layer: output pollutant layer, layer file 
Shapefile output location: output location of pollutant shapefile 
Pollutant shapefile: output pollutant shapefile 

 

2. Mass Output Code 

In this code, total mass of a given pollutant in the West Coast Basin is calculated.  The inputs are 

the cluster polygon file and the kriging rasters generated in the Clustered Kriging Tool (therefore 



 

 

it requires that this tool have been run first).  The only variable the user would ever need to 

change or specify is the mass coefficient value, (line 111) which can easily be doing by typing it 

into the code.  This code will output a table populated with values for each cluster of ID, number 

of points, number of cells, and total mass, and will print these values as text on the python shell.   

 
 
  



 

 

DISTRIBUTION OF MASS ESTIMATE DATA AMONG CLUSTERS 
APPENDIX F 

Shown in each chart are the masses contained in the 10 clusters with the most mass for 
each pollutant. In the case of chloroform, the automated model only used 9 clusters to find the 
total mass within the West Coast Basin. A large proportion of each pollutant’s total mass in the 
study area can be attributed to just a few clusters. Three clusters or less accounted for at least 85 
percent of estimated basin-wide mass for each pollutant.  
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