Host-parasite interactions: Evolutionary genetics of the House Finch-Mycoplasma epizootic

Scott V. Edwards
Department of Organismic and Evolutionary Biology
Harvard University
Cambridge, MA USA
http://www.oeb.harvard.edu/faculty/edwards
House Finches and *Mycoplasma*: a strong host-parasite interaction

- *Mycoplasma gallisepticum* escaped chickens and invaded House Finches in the eastern U.S., ~1994
- 10 years later, finches are more resistant and recent bacterial strains are attenuated
- Natural selection (?) on House Finches by disease
 - Higher survival rates found in:
 - Females versus males
 - Smaller versus larger males
 - Bright males versus dull males
 - Can we identify the genes contributing to survival or susceptibility?
Multi-pronged approach to a recently established host-parasite interaction

1. Genetic structure of pre-epizootic house finch populations (AFLPs)
2. Large-scale screen for parasite-induced gene expression in house finches
3. Shifts in allele frequency between pre- and post-epizootic house finches
4. Molecular evolution and host range expansion of the *Mycoplasma* parasite
Recent history of House Finch populations

- Historic range
- ~1870 bottleneck?

- 1940 ~200 birds
Mycoplasma are obligate parasites and have some of the smallest genomes of any non-virus sequenced.
- *Mycoplasma gallisepticum* escaped chickens and invaded House Finches in the eastern U.S., ~1994

- 8 years later, finches are more resistant to the bacterium and recent strains are attenuated

- Have finches evolved resistance?
Population and phenotypic consequences of 1994 epidemic

Males decline after epidemic

Increased redness in males and decreased size after epidemic

AFLPs: House Finch are moderately structured with little evidence for genetic bottlenecks

Distribution of variation (AMOVA)
- Among individuals w/in pops.
- Among pops. w/in subspecies (native range)
- Among subspecies (native range)
- Original range
- Introduced range

Tripartite structure of House Finch populations suggested by assignment test of AFLP data

Suppression subtractive hybridization

- A PCR method for differentially amplifying transcripts that differ in expression in two cell populations
- Often used in plant studies; a useful alternative to microarrays

Experimental cDNA, split into two pools

1. “tester 1” (control)
2. “tester 2”

- cDNAs
- Differentially expressed cDNAs
- cDNAs shared between control and tester

Normalisation

Hybridisation 1

Hybridisation 2

Fill in ends

Selectively amplify

Ligate primers () to two cDNA pools
Example macroarray results

Probe identical filters with RNA from infected and uninfected birds

Distinct hybridizations - differentially expressed genes

Common hybridizations -- noise

- identical filters
 (A + B, C + D)

- Reciprocally subtracted probes
 (A vs. B, C vs. D)
Sequencing suggests change in expression for heat shock and immune system genes

Additional upregulated genes
- Granzyme A

Additional downregulated genes
- Mhc class II

Preliminary network of genes induced by infection

Healthy Finch

Mycoplasma infected Finch

↑

HSP90, TIM1, Granzyme A, Mhc class II, invariant chain

↓

apoptosis, mitochondrial degradation, elongation factor 1α, COI, COIII, NADH4

Host modulation or parasite subversion of immune response?

Museum specimens permit temporal comparison of genetic diversity pre- and post-epidemic House Finch populations.
Mhc class I crystal structure

peptide binding region (PBR)

α1 domain

peptide

α2 domain

β2 microglobulin
Both increases and decreases in diversity are predicted by evolution of resistance in house finches.

Mhc class II molecules

Finch with conjunctivitis

homozygote

heterozygote

Healthy Finch

Foreign pathogen
Little evidence for change in heterozygosity (θ) at an Mhc class II locus between pre- and post-epidemic samples.

However, rapid shifts in frequency observed at some peptide-binding codons

* MHC class II peptide binding codon

The *Mycoplasma gallisepticum* genome: ~0.99 Mb

Variation in genome size among House Finch (HF) and Turkey (TK) isolates of *Mycoplasma*.

SmaI

- **HF GA 1995**: 965-988 kb
- **TK GA 1973**: 935-950 kb

Eagl

- **HF GA 1995**: 965-988 kb
- **TK GA 1973**: 935-950 kb

* 48.5 kb
‡ 23.1 kb

Courtesy Wendy Smith, unpubl. data
Recent host shift of *Mycoplasma gallisepticum* to house finches (HF) - but how recent?

Maximum likelihood tree,
~5200 bp *RpoB* and *fusA* genes

Courtesy Wendy Smith, unpubl. data

Mycoplasma gallisepticum

0.05 substitutions/site

TK = turkey
CK = chicken
HF = House Finch
Empirical conclusions

Pre-epizootic House Finch structure
 - AFLPs suggest ‘significant’ but mild population differentiation

Parasite - induced gene expression
 - House Finches show up- and down-regulation of key immune system genes upon experimental infection

Diachronic allele frequency shifts in house finch populations
 - Little evidence for reductions in diversity but some evidence for allele frequency shifts at key immune system genes

Parasite evolution
 - DNA sequence information provides a detailed view of *Mycoplasma* history
Conservation implications

A double invasion
- Range expansions in both hosts and parasites result in novel evolutionary pressures

Microbial host range expansion
- Adaptation of *Mycoplasma gallisepticum* to a novel host could result in yet further increases in host range in wild birds

Implications for infectious disease biology
- Pathogens can spread across the country in a matter of years
- A number of unresolved issues in the role of genetic diversity in regulating parasite expansion
Acknowledgments

AFLPs, macroarray analysis
- Zhenshan Wang, U. Washington
- Kristy Farmer, Geoff Hill, Auburn U.

MHC evolution
- Christopher Hess, U. Washington

Mycoplasma evolution
- Wendy Smith & Colin Dale, U. Utah and Auburn U.

Funding
- NSF