Federal Policy on Forest Invasive Species and its Relationship to Evolutionary Biology Research

Dr. Robert D. Mangold
USDA Forest Service

Dr. Deborah L. Rogers
UC (GRCP) and Center for Natural Lands Management
Topics

- Federal Policy for Forest Invasives
- US Forest Service Invasive Species Management Plan
- Science-Policy Interface: Values and processes
- Opportunities for more effective interaction
Federal Management Plan for Invasive Species

- Clinton Executive Order (1999)
- National Invasive Species Council formed
- 12 Federal Departments
- Co-chaired by Departments of Interior, Agriculture, and Commerce
- Developed National Plan
Forest Service Invasive Species Management Plan

1. Prevention
2. Eradication
3. Control and Management
4. Restoration
5. Research and Development
1. Prevention

- Risk assessments: e.g. exoticforestpests.org
- Offshore pre-clearance of shipments (APHIS)
- Asian gypsy moth Russian/Japanese port monitoring
- International exchanges of expertise
2. Eradication

- New Pest Advisory Group
- Early Detection/Rapid Response
- Cooperation among Federal/State agencies
- Eradication of new invaders (Asian longhorned beetle in Chicago, gypsy moth in west)
3. Control and Management

- Long-term pest-specific strategies
- Slow-the-Spread Gypsy Moth, SOD, EAB
- Leafy spurge- spotted knapweed, other entrenched invasive plants, noxious weeds
- Forest Health Program: 800,000 acres/year treated
4. Restoration

- White Pine Blister Rust: genetic resistance breeding and planting
- American Chestnut: genetic resistance breeding and planting
- Native grass plantings
- Urban replanting after ALB, EAB
5. Research and Development

- Ongoing efforts for new invaders
- EAB, SOD, Sirex, Plants, Gypsy Moth
- Detection techniques (pheromones, lures)
- Control methods
- Biology
- Biocontrol
- Remote sensing
FS Genetics Program: Management and R&D

- Long-term history of forest tree breeding and research
- Genetic variation studies - most major conifers
- Common-garden studies, molecular studies on genetic variation/architecture
- Breeding purposes/seed transfer rules
- Operational breeding efforts: Douglas-fir, white pines, loblolly pine
FS Policy on Insects/Pathogens

- Prevention- Pathway approach: solid wood-packing material, treatment required, major pathway
- APHIS has lead on new invaders: regulatory role
- FS has support role: non-regulatory
- Eradicate if New Pest Advisory Group recommends it
- Quarantine possible: APHIS
- Mgmt program possible: APHIS and FS, States
- FS, States ‘inherits’ pests in long-term: Dutch-elm disease, chestnut blight, etc.
USDA Policy on Invasive Plants

- FS controls ‘noxious weeds’ on NFS lands
- FS eradicates new invaders when possible
- FS manages existing problem plant pests
-APHIS policy on importation of “Plants for Planting”: Q-37 regulations
- Currently use ‘black list’- limited list of bad actors
- Proposed ‘good list’ (i.e., after a risk assessment, added to list)-(but ‘grandfather’ rule applies)
- “Clean Stock” approach: approve entire nursery operation
- Many partners involved in formulation of policy
Science/Policy Interface: Values and Processes

- Policy: Anything the government does/spends money on
- Policy
 - “Real policy”- in the manual/handbook
 - Programs
 - Decisions
- Funding allocations
Science/Policy Interface: Values and Processes

Science environment:
- Values experimentation, innovation, basic over applied research
- Risk acceptance: high
- Processes: peer review
- Rate of change: new information acquired quickly, paradigms change more slowly
- Driven by: previous research, curiosity, funding

Policy environment:
- Values stability, human-interface topics (health, security, commerce, etc.)
- Risk acceptance: low
- Processes: Institutional chains of command
- Rate of change: slow, but responsive to ‘crises’
- Driven by: (invasives) crises, politics (Federal administration)
Policy environment: Highest values (what people care about)

- Human health: diseases, pollution
- Economically important systems (e.g., food crops)
- Environmental services: carbon, water, T&E species
- Homeland Security
1) **Invasiveness**: spread rate potentials (dispersal mechanisms/rates, life cycle, climatic limits, colonizing ability). Most of the talks today are basic research that drive ‘invasiveness’.

Studies on genetic variation, hybridization, adaptation, founder effects—leading to why/how this species becomes an invader.

2) **Locations**: current and future geographic locations of invasive species. Especially helpful are studies that predict which environments will be invaded.

3) **Pathways**: how does it get here? Anthropogenic factors. Controls for import/export; disposal techniques, etc. Crucial for management programs.

4) **Management**: how do we better detect, prevent, (bio?)control, mitigate? This research is more applied; research presented at this conference is more basic.
Science-Policy Interface

Basic Research is:

- Incomplete (addressing small component of the bigger management issue)
- Not directly applicable (e.g., temporal/spatial scale)
- May apply to a species or system that management has little interest in, but could serve as a model for one of interest.
Basic Research
Hybridization
Founders effects
Genetic variation
Adaptation

Applied Research
Invasion Potential
Reproductive Rates
Invasion Predictions

Policy
Programs For Control

Funding

Policy development:
Current climate

- Increasingly strict scrutiny of priorities
- Priorities must be defended/explained: which species to spend money on
- ‘High value’ systems are top priority for policy makers
- Much less funding available for anything not considered ‘directly applied’
- R&D proposals can be positioned to link better with applied needs
Science-Policy Interface: Opportunities for more effective interaction

- More fora (like this one!) to address topics such as:
 - Paradigm shifts in biology: how does this affect invasives research (e.g., rate of evolutionary change)
 - How can funding programs (i.e., NSF, NIH, USDA, etc.) interact more effectively to yield valuable ‘applied’ information more quickly
 - How to use the limited research funding more effectively (target species? Mechanisms? More international research?)
- Involving scientists more effectively in policy development and review processes (?)
- Your ideas?