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Abstract 
The California Department of Fish and Wildlife (CDFW) provided research funds to study the 

conservation genomics and landscape genomics of the California desert tortoise, Gopherus 
agassizii, in response to the Desert Renewable Energy Conservation Plan (DRECP).  Our desert 
tortoise research group (“Team Tortoise”) was headed by the lab of Brad Shaffer at University of 
California Los Angeles and included colleagues at, or previously from, the University of 
Southern California, University of California at Davis, and University of Nevada at Reno. Team 
Tortoise consolidated tissue samples of the desert tortoise from across the species range within 
California and southern Nevada, generated a DNA dataset consisting of full genomes of 270 
tortoises, and analyzed the way in which the environment of the desert tortoise has determined 
modern patterns of relatedness and genetic diversity across the landscape. Here we present the 
implications of these results for the conservation and landscape genomics of the desert tortoise. 
Our work strongly indicates that several well-defined genetic groups exist within the species, 
including a primary north-south genetic discontinuity at the Ivanpah Valley and another 
separating western from eastern Mojave samples. We also incorporate existing desert tortoise 
habitat modeling data into a novel, spatially explicit, landscape genomic inference framework 
that allowed us to predict the relative impacts of five proposed development alternatives within 
the DRECP and rank them with respect to their likely impacts on desert tortoise gene flow and 
connectivity in the Mojave. Finally, we analyzed the impacts of each of the 214 distinct proposed 
development area “chunks,” derived from the proposed development polygons, and ranked each 
chunk in terms of its range-wide impacts on desert tortoise gene flow. This whole-genome 
approach, which we have here implemented at an unprecedented scale for a non-model species, 
is returning spatially-explicit results at a level of detail that has not been previously possible, 
allowing us to evaluate alternative land use projections at a biologically meaningful level for 
desert tortoise movement and population connectivity. 
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Executive Summary: Objectives and Deliverables 
 Below, we summarize the project’s original objectives, the results obtained, and ongoing 
research directions: 
 
1. Develop new methods for generating a comprehensive genome-wide summary of genetic 
variability among desert tortoises in the region using high throughput, low coverage genome 
sequencing.  
  
Our sequencing strategy was extremely successful, generating data for over 50 million putative 
polymorphic loci for 270 tortoises. Over 1.29 trillion base pairs of total genetic data were 
produced for this project. 
 
2. Develop a novel, robust landscape genetic inference framework that accommodates the 
statistical uncertainty associated with low-coverage sequencing to accurately estimate genetic 
relatedness among tortoises. 
 
Standard single nucleotide polymorphism (SNP) genotype calling is error-prone with low 
coverage sequencing data of the type that we generated. Consequently, we developed, tested, and 
employed methods to measure genetic relationships between individuals based on raw read 
count data averaged over tens of millions of sites in the genome, allowing us to confidently infer 
relatedness and other summary statistics between pairs of tortoises. 
 
3. Assemble tissue samples from up to four target populations in the Ivanpah Valley and Pisgah, 
Brisbane, and Pinto Wash corridors, with a goal of one tortoise per 1-10 hectares, evenly spaced 
across these previously identified linkage corridors. 
 
We established a collaboration with Professor Dick Tracy and his team to share blood samples 
from roughly 1,000 desert tortoises that his group has collected from throughout the Mojave 
Desert over the past decade. We also collaborated with Roy Averill-Murray of the US Fish and 
Wildlife Service and with the Desert Tortoise Conservation Center (DTCC) to increase our 
sampling, especially in regions where development is proposed or underway in the Ivanpah 
Valley. Using a subset of 270 of these samples allowed us to employ our desired spatial genetic 
sampling without any further disturbance to wild tortoise populations. 
 
4. Identify and collate the finest-scale habitat models available and assemble GIS layers for 
vegetation, soil type, elevation, temperature, and roads at one site (Ivanpah, Pisgah, or Brisbane, 
depending on the identified needs of the Grantor and the United States Fish and Wildlife Service 
(USFWS)). 
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After a review of published studies on desert tortoise habitat suitability models and landscape 
genetics, we identified and obtained 83 landscape variables as GIS layers covering the 
geographical range of our tortoise samples to a resolution of 30 X 30 meters. Of these, we 
selected three subsets of 6, 12, and 24 layers chosen to minimize correlation among layers to use 
in analyses. These models were then compared to an isolation by distance model that 
incorporated habitat bounds specified by a desert tortoise habitat model generated by Nussear et 
al. (2009). We found the landscape variable models fit no better than the simpler model using 
only the Nussear et al. habitat projections, and so we used only that layer for the current work. 
However, we retained the GIS layers for future analyses. 
 
5. Model existing landscape features and linkage corridors identified by the DRECP to determine 
resistance pathways for individual tortoise connectivity across the landscape. 
 
We developed a novel statistical framework in which all pairwise genetic divergences between 
sampled individual tortoises were fit to a geographically explicit model of tortoise dispersal 
across a landscape with heterogeneous resistance to movement. We used the resulting model to 
evaluate the relative and absolute impacts of the five proposed development alternatives 
(Preferred Alternative as well as Alternatives 1, 2, 3, and 4) in the draft DRECP. In building this 
model, we combined development projects into a set of parcels, considered each to be 
inaccessible to tortoise movement, and modeled the decrease in gene flow that each alternative, 
and each parcel, imposes on tortoises. Alternative 1 was found to be least detrimental to 
tortoises in the Mojave, followed (in increasing order of impact) by the Preferred Alternative, 
Alternative 4, Alternative 3, and Alternative 2. The Preferred Alternative, and Alternatives 3 and 
4 had roughly twice the impact of Alternative 1, while Alternative 2 had three times the impact of 
Alternative 1 on tortoise gene flow. 
 
6. Using siting information from existing project applications and DRECP Development Focus 
Areas (DFAs) and reserve lands, identify the most likely siting of renewable energy installations 
- including service roads, parking structures, and buildings, and model the impacts of different 
configurations and placements on overall connectivity across the length of the corridor. 
 
The inference framework we developed allows for flexibly evaluating virtually any proposed 
development alternative. We provide a rank order of relative and absolute impacts of 214 
discrete potential areas of development (“development chunks”) from all five DRECP 
alternative development schemes. Other potential development schemes can be similarly 
evaluated in the future. 
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Introduction 
The Mojave desert tortoise (Gopherus agassizii, recently identified as taxonomically distinct 

from the Sonoran desert tortoise, Gopherus morafkai, see Murphy et al. 2011) is a widely 
distributed but declining resident of the Mojave Desert. Potential renewable energy development 
may negatively influence future population trajectories of this species, placing it into direct 
conflict with renewable energy projects. Anticipated increases in direct mortality, habitat loss, 
and especially habitat fragmentation from renewable energy development within the Desert 
Renewable Energy Conservation Plan (DRECP) Planning Area need to be considered in 
combination with other population stressors in the desert tortoise’s range. Listed under both the 
federal and California Endangered Species Acts, the Mojave desert tortoise is and will continue 
to be a significant driver of reserve design under the DRECP.  Gaining the most precise 
knowledge possible about tortoise population health, genetic diversity, population substructure, 
and exchange of migrants in this widespread, unevenly distributed species will contribute to a 
comprehensive conservation strategy for this and other species covered by the plan. It will also 
inform the delineation of ecologically meaningful reserves in California’s deserts and facilitate 
siting of viable zones for renewable energy that best accomplish the goals of energy development 
while minimizing impacts on current and future tortoise population dynamics. 

Recovery of rare and endangered species requires a series of interrelated steps and 
approaches. One pressing need is to apply the best available scientific techniques to understand 
how widespread species are genetically connected across landscapes, and therefore the extent to 
which seemingly discrete populations are genetically and demographically connected or isolated. 
Acquiring these data via direct field observations (e.g. mark-recapture, radio transmitters) is 
time-consuming, challenging, and expensive, especially for a cryptic species like the Mojave 
desert tortoise, which occurs at low density, is frequently in underground retreats, and lives for 
decades. Both direct and indirect (genetic) measures of gene flow and connectivity should be 
used to fully realize how organisms traverse landscapes, and therefore how to best preserve 
historical connections in the face of human modifications and the habitat fragmentation that 
often follows. A combination of direct and indirect genetic analyses often brings complementary 
information to management. For example, direct measures may indicate daily and seasonal 
activity and movement patterns, whereas indirect genetic measures often better indicate the 
extent to which dispersal results in successful reproduction and the long-distance, but often 
infrequent, movement of genes across landscapes.  

Until recently, the principal paradigm used to study how genetic variation traverses 
landscapes has been one of Isolation by Distance (IBD; Wright 1943). One nearly ubiquitous 
field observation is that genetic differentiation between populations increases with the 
geographic distance between them (Jenkins et al. 2010) (“Everything is related to everything 
else, but near things are more related than distant things;” Tobler 1970).  With the advent of 
cheaper DNA sequencing and the rise of Geographic Information Systems (GIS) data 
availability, the field of landscape genetics has developed to quantify other aspects of 
environmental heterogeneity that shape patterns of dispersal and genetic variation above and 
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beyond that derived from geographic distance alone.  Recent innovations have brought 
inferences from the burgeoning fields of landscape ecology and associated ecological niche 
models (Elith and Leathwick 2009; Forman 1995; Peterson et al. 1999) into the equation, adding 
a much-needed GIS component to landscape genetics analyses.  Fortunately, some of the 
groundbreaking research in this area has been carried out in desert tortoises. We briefly 
summarize that research below, before describing our methods and findings. 
 
Current state of knowledge of desert tortoise landscape genetics 

Andersen and colleagues (2000) modeled tortoise density, measured using field observations, 
as a function of 11 spatial GIS data layers, and found that “soil composition and parent materials 
can be important determinants of habitat suitability.”  In 2009, Nussear et al. expanded on this 
work, compiling a dataset of over 15,000 desert tortoise (both G. agassizii and G. morafkai) 
occurrence observations. They modeled desert tortoise presence and absence over its entire range 
as a function of 16 spatial GIS layers and built a habitat suitability model for the species. 

At the same time, a parallel research program was generating DNA sequence data for desert 
tortoises to learn how gene flow between desert tortoise populations may be structured by 
landscape characteristics.  Edwards et al. (2004) reported on genetic variation at seven 
microsatellite loci for 170 Arizona (G. morafkai) tortoises, some of which were also tracked via 
radiotelemetry. Their research indicated that “long-distance movements result in the exchange of 
genetic material among adjacent populations,” but that “estimates of gene flow predate 
anthropogenic habitat fragmentation and should not be taken as evidence that natural 
immigration/emigration still occurs.” That is, because of the long generation time of tortoises, it 
may take many years for genetic population substructure to reflect reduced patterns of migration 
caused by anthropogenic disturbances. They further warned that long-distance migrants may be a 
critical component of connectivity and metapopulation dynamics in the species. 

Hagerty et al. (2011) used the habitat suitability model of Nussear et al. (2009) to 
parameterize a resistance surface and a least cost path map (where resistance to migration in a 
patch of habitat (McRae 2006) is the inverse of its suitability from the model). Using 20 variable 
microsatellite loci sequenced in 744 tortoises, Hagerty et al. (2011) found support for both an 
effect of geographic distance and topographical barriers in structuring patterns of gene flow over 
the range of the desert tortoise. Their summary figure showing resistance across the range of the 
Mojave desert tortoise suggested that many low-cost paths, including ones in and out of the 
Ivanpah Valley, existed among their 25 population samples.  Latch et al. (2011) employed 
similar sampling (859 tortoises, genotyped at 16 microsatellite loci), and found support for the 
hypothesis that both natural landscape features (slope), and anthropogenic features (roads) were 
limiting gene flow.   

These studies offered exciting clues into the biology of the desert tortoise and the way in 
which the species interacts with its landscape. They also provided the earliest foundational 
insights that can be gleaned from landscape genetic data within the landscape and conservation 
genetics communities for desert tortoises. However, these studies were also limited in their 
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ability to draw strong, spatially explicit conclusions by a lack of genetic resolution and the 
inability to precisely model anthropogenic impacts on population genetic movement 
probabilities. Recent advances in next generation sequencing (NGS) have enabled the relatively 
cheap generation of many orders of magnitude more DNA sequence data, which in turn has 
enabled the detection and quantification of vastly more subtle landscape effects on patterns of 
current and historical gene flow, and we fully embrace these advances in the current work. 

In the current study, our goal is to move beyond the foundational work that has been 
accomplished on Mojave desert tortoise landscape genetics and beyond what is achievable with 
SNP-based NGS studies. By generating results based on full genome sequencing, we bring a 
greater level of precision to landscape genetic analyses than has previously been possible for the 
Mojave desert tortoise. Rather than generate genetic data for a few thousand variable single 
nucleotide polymorphisms (SNPs) as is now sometimes done in NGS studies, we sequenced the 
entire genome (an estimated two billion base pairs) of 270 geographically distributed tortoises. 
The resulting dataset is, to our knowledge, the most comprehensively geographically sampled 
dataset of whole genomes in a wild species. We generated this massive DNA dataset from a 
sample of desert tortoises that evenly covers their range, used (and invented, when necessary) 
cutting-edge spatial statistics tools, and applied these tools to both an expanded collection of 
high resolution GIS data rasters (explained in detail in the Appendix) and the habitat model of 
Nussear et al. (2009) to quantify how gene flow between tortoises has been affected by historical 
landscape features and how it will be affected by future anthropogenic changes. Below, we 
discuss these results and present specific, actionable, and data-supported recommendations for 
the conservation of the desert tortoise. 
 
Deciding among genomic approaches 

Researchers in population genetics now have a choice of many different types of data and 
strategies for genetic data collection. Traditionally, virtually all work has used single or multi-
gene Sanger sequencing, and traditional data types have included microsatellites, mitochondrial 
DNA (mtDNA) and nuclear DNA sequence analysis. While Sanger sequencing is still considered 
the gold standard with regard to per-nucleotide accuracy, the amount of data generated in Sanger 
sequencing is limited due to the cost (it is very expensive on a per-nucleotide basis), labor, and 
time that such analyses often take to complete. Much more recently, several new techniques that 
take advantage of massively parallel next generation sequencing (NGS) platforms have begun to 
replace traditional Sanger sequencing approaches. These new approaches almost invariably rely 
on Illumina NGS technologies, and sequence much larger fractions of the genome in a single, 
highly parallelized sequencing experiment. Restriction site associated DNA (RAD) sequencing 
and targeted sequence enrichment are two recent advances that seek to isolate, sequence and 
analyze a consistent subset of the genome from each individual, often yielding several thousand 
informative SNPs. Microsatellites and RADseq are very useful for population genetic studies and 
can generate small (most microsatellite analyses) to larger (RADseq) amounts of informative 
data. However, both suffer from problems with missing data, null alleles (particularly for 
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microsatellites), and a general lack of information about the genomic distribution of informative 
markers. Targeted sequence enrichment is a technically more complex approach, and relies on 
having existing genomic resources that allow a researcher to identify (“target”) specific genomic 
regions to study. Target enrichment studies can also generate thousands of SNPs whose physical 
location and linkage relationships within that genome are known, but at relatively high cost in 
comparison to RADseq. 

The newest, and most radical, approach, and the one that we employed in this study, uses 
whole-genome sequencing to characterize the entire genome of each individual. Recently, 
sequencing technology has progressed to the point where entire genomes can be sequenced, at 
low coverage, for prices accessible to wildlife researchers. Uncertainty associated with the 
genotype of any SNP at any particular position in the genome in low coverage, whole genome 
sequencing is much greater than for other approaches, because RADseq and target capture 
generally sequence each site many times. However, whole genome sequencing provides 
information for many orders of magnitude more sites than microsatellites, RADseq or target 
capture, and the statistical power gained appears to far outweigh the uncertainty from low-
coverage, whole genome approaches. 
 
Methods 
Sampling 

Desert tortoise blood samples were obtained in the field between 2004 and 2013. Our samples 
come from two sources. First, we contacted all individuals who have published papers using 
Mojave desert tortoise DNA to determine research groups that still have tortoise samples and to 
explore potential collaborations. We identified Professor Richard (Dick) Tracy, including current 
and past members of his research team Bridgette Hagerty, Fran Sandmeier, and Chava 
Weitzman, as a group interested in working together in a collaborative framework. We also were 
given full access to all material stored at the DTCC. We used existing georeferenced data to map 
all available tissues, and based on a visual assessment of those samples and a day-long 
discussion with Dr. Kristin Berry (USGS Western Ecological Research Center) on high-priority 
areas in need of analysis, we chose 270 blood samples for genomic analysis (see Figure 1). 
Blood samples had been stored in tubes by themselves or in RNAlater (Life Technologies) and 
kept frozen at -80C, or as dried drops on filter paper at room temperature. All blood samples 
were transferred to the Shaffer lab at UCLA for genetic analysis. 
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Figure 1: Sample map 

Laboratory Procedures 
DNA was extracted using a salt extraction protocol (Sambrook et al. 2001), and quantified 

using the Quant-It dsDNA kit (Invitrogen). After diluting to 30ng/uL, DNA extractions were 
physically sheared to approximately 200-600bp using a BioRuptor (Diagenode) with an average 
of 7 cycles on the highest setting (30 seconds on, 90 seconds off). Sheared DNA was cleaned 
using a SeraPure bead mixture to remove chemical contaminants and to exclude short DNA 
fragments, which reduce sequencing efficiency. Illumina sequencing adapters were ligated to 
fragmented DNA using a standard library preparation kit (Kapa BioSystems). Each sample 
received one of 10 adapters with distinct 10 base pair indexes that allowed for samples from 
different tortoises to be combined, multiplexed in a single sequencing lane, and later 
computationally separated back into individual-tortoise data. All indexes had an edit distance of 
at least three to other adapters to allow for sequencing errors in the index reads (Faircloth and 
Glenn 2012). Importantly, the protocol did not include any PCR amplification, which is known 
to introduce and amplify biases in the resulting sequence data (Aird et al. 2011). 

A total of 270 tortoises were submitted for sequencing at the Vincent J. Coates Genomics 
Sequencing Laboratory at UC Berkeley in three batches. Sample libraries were quantitated using 
qPCR and pooled, 10 samples per lane, for whole genome sequencing. All samples were 
sequenced in 100bp paired-end mode on an Illumina HiSeq 2000 or HiSeq 2500. Data for 
individual samples were de-multiplexed using Illumina’s CASAVA pipeline and downloaded in 
FASTQ format for analysis. 
 
Genomic Data 

We developed a multi-step pipeline to remove low quality data, consistent with current best 
practices in processing genomic data. Particularly for low-coverage data (our data were 
approximately 1.5X coverage, which is very low), this is a critical step. First, reads that failed 
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Illumina’s CASAVA filter were removed. Next, each sequencing read was checked for adapter 
contamination and base call quality degradation. Adapter contamination arises when the 
fragment being sequenced is shorter than the read length, resulting in bases being called at the 3’ 
end of fragments that are actually part of the synthetic sequencing adapters rather than the 
tortoise’s genome. Base call quality degradation occurs because the quality of base calls often 
deteriorates from 5’ to 3’ on Illumina sequencing reads (Fuller et al. 2009). To account for both 
of these factors, reads were processed using Trimmomatic 0.32 (Bolger et al. 2014). Specifically, 
leading 5’ base pairs with a phred quality score (a standard metric of probability of accurate 
base-calling) below 5 were removed, and trailing 3’ base pairs with a phred quality score below 
15 were removed. Then, a four base pair window was moved from 5’ to 3’ along each read, and 
the read was trimmed when the average phred base quality within the window dropped below 20. 
After this trimming, all reads less than 40bp in length were discarded. 

Following sequence trimming, overlapping read pairs were merged using fastq-join from the 
ea-utils toolkit (Aronesty 2011). (Paired-end reads simply means that each 200-600 base pair 
DNA fragment was sequenced for 100 base pairs from both ends of the fragment, rather than 
only one 100 base pair read from the 5’ end.) For short fragments, paired-end reads will overlap 
when the total length of the fragment being sequenced is less than two times the read length; 
merging these reads prevents artificially inflating sequencing coverage estimates where reads 
overlap, and results in improved mapping efficiency for these reads. Joined read pairs were then 
combined with singleton reads whose mate pairs were discarded in earlier quality control steps. 
This resulted in a set of paired reads and a set of singleton reads for each tortoise. 

Paired reads and singleton reads were separately mapped to a draft of the Galapagos tortoise 
(Chelonoidis nigra) genome supplied by the laboratory of Dr. Adalgisa Caccone at Yale 
University. Ideally, reads would be mapped to a Mojave desert tortoise genome, since that would 
allow the maximum number of reads to be identified and physically arranged along the species’ 
genome. However, a high-quality genome for the Mojave desert tortoise does not currently exist 
(as part of this project, we have initiated a collaboration with a group from Arizona State 
University that is producing this genomic resource). Mapping was done with bwa mem version 
0.7.10-r998-dirty (Li 2013). Sequence alignment map (SAM) files output from bwa mem were 
converted to binary alignment map (BAM) and the paired and singleton alignment files for each 
tortoise were merged into a single alignment file for each tortoise using samtools version 1.0 (Li 
et al. 2009). 

Merged BAM files were then cleaned to soft-clip alignments that extended past the end of 
reference contigs (CleanSam) and individual tortoise read group information was added 
(AddOrReplaceReadGroups) using picard 1.119 (http://broadinstittute.github.io/picard). 
Duplicates were then marked to identify levels of optical duplication (single molecule colonies 
on an Illumina flow cell that are mistakenly identified as multiple reads and can inflate coverage 
estimates). It was not necessary to mark or remove PCR duplicates because we utilized a PCR-
free laboratory protocol, eliminating this potential source of error. Mapping rates were then 
calculated by counting the appropriate alignment flags using samtools flagstat (Li et al. 2009). 
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Modeling whole-genome sequencing 

Given that no study has, to our knowledge, used low-coverage, whole-genome sequencing for 
large-scale population genomics of an endangered species, we first conducted a simulation study 
to compare RADseq vs. whole-genome approaches. We simulated datasets from two 
hypothetical populations separated by a true genetic distance of Fst=0.001. That is, for this 
simulation, 0.1% of the total genetic variation was between these two populations, and 99.9% 
was within populations. In the first simulation, we sampled two thousand polymorphic loci 
(SNPs), at 20X coverage (typical for RAD sequencing or target capture). In the second, we 
simulated one million polymorphic loci, at 1X coverage (a low, and therefore conservative 
number of SNPs for whole-genome sequencing). The low, but real level of genetic divergence 
between these simulated populations was not recoverable using the first dataset, but was 
confidently inferred using the second (Figure 2). This result is consistent with a known guideline 
for population genetic analyses (Patterson and Reich 2006): genetic differentiation (measured by 
Fst) between two groups or individuals becomes detectable if it exceeds 1/sqrt(n*m), where m is 
the number of variable markers (~1 million in our simulation) and n is the number of individuals. 
Based on these results, we were convinced that we should pursue a low-coverage, whole genome 
approach to best quantify Fst among individual tortoises. 

 

 
Figure 2. Comparison of two different sequencing approaches in their ability to differentiate very slightly differentiated 
populations (Fst=0.001) 

Inference of Genetic Relationships 
In this study, the individual tortoise comprised our sampling unit. To determine the 

relationships between the sampled tortoises, we estimated two quantities for each pair of 
tortoises: pairwise sequence divergence, and genotype covariance. Pairwise sequence divergence 
is the average density of sites at which the two sequences differ, and is hence proportional to the 
average time back to the most recent common ancestor of the samples, averaged across the 
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genome.  Genotype covariance, on the other hand, decreases with average time back to the most 
recent common ancestor (Slatkin 1991), and is the basis for several widely used visualization 
methods. 

To estimate these quantities, we used angsd (http://popgen.dk/wiki/index.php/ANGSD), an 
existing set of computational tools designed to incorporate uncertainty in genotype calls deriving 
from low-coverage sequencing data (Kim et al. 2011, Korneliussen et al. 2014, Li et al. 2010). 
This software provided us with reliable lists of polymorphic sites (SNPs), but unfortunately, we 
found that genotype posterior probabilities generated by angsd were influenced by both the 
variation in sequencing depth between samples and the distance of a given sample to the rest of 
our tortoise samples.  

Both of these influences can lead to incorrect population inferences about tortoise biology, 
and therefore require correction. To do so, we developed a new method that instead uses raw 
read counts and is robust to differences in sequencing depth between individuals. To calculate 
divergence between a pair of tortoises in a way that is not influenced by sequencing depth, we 
estimated the probability for each base pair that two homologous reads drawn from the two 
tortoises are different at that base and averaged this across the genome, weighting by the read 
depths in those tortoises at that site. Using this method, pairwise genetic divergence is not 
correlated with sequencing depth. For the following analyses we computed these pairwise 
sequence divergences using the full list of 52,740,529 sites determined to be polymorphic by 
angsd with a p-value less than 1e-6 (p<0.000001) and for which no tortoises had a read depth 
greater than 10 (to avoid overweighting repetitive regions, which can also skew summary 
statistics). These were then corrected to the proper genomic scale by multiplying by the density 
of polymorphic sites (an average of 2.98% in the 1.899 billion relevant bases of the reference 
genome). 

The mean sequence divergence between two sequences provides an estimate of the mean time 
since they shared a most recent common ancestor, averaged across the sequence and multiplied 
by twice the average substitution rate (Hudson 2007). To make our results more interpretable, for 
the purposes of fitting models we converted sequence divergences to years by dividing by an 
estimate of twice the average nucleotide substitution rate. The substitution rate was estimated by 
dividing the pairwise sequence divergence for a large set of genes between a tortoise (Manouria 
emys) and the painted turtle (Chrysemys picta) by a fossil-calibrated divergence time estimate 
between those two lineages. These two values were derived from a different large-scale turtle 
genomics project ongoing in the Shaffer lab. This estimate is probably not a completely accurate 
estimate of the true mean substitution rate for the desert tortoise, but is by far the best estimate 
currently available for turtles and tortoises from this related group of species, including the 
desert tortoise. It provides a reasonable, albeit approximate, idea of the time scales involved in 
our estimates. 

We pursued multiple avenues of visualization and analysis of population structure. To 
investigate the geographic structure of genetic variation, we compared and plotted average 
pairwise sequence divergence against pairwise Euclidean distance between samples. In addition, 
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we performed a principal component analysis (PCA) using the sample genetic covariance matrix, 
and obtained simple ‘geogenetic maps’ (inset of Figure 4) by plotting different PC axes against 
each other (Menozzi et al. 1978, Patterson and Reich 2006, Novembre et al. 2008). We also 
plotted the first several principal component scores for each tortoise onto elevational maps to 
visualize how tortoise genetic differentiation was distributed across their actual range (Figures 
A1 and A2). 
 
Isolation by Environment 

It may well be that knowing simply where tortoises do not go (e.g. up steep mountains) 
suffices to describe gene flow across the species range.  However, there are good reasons to 
suspect that other environmental factors have substantial effects. For instance, if overall habitat 
quality varies across the range so that there are “source” and “sink” populations, then we expect 
“source” populations to harbor more genetic diversity and to potentially serve as hubs connecting 
the “sink” populations.  On the other hand, if offspring dispersal is biased such that young 
tortoises tend to end up in in habitats similar to their parents (beyond the correlation implied by 
localized dispersal), then gene flow between regions with different environmental variables will 
be reduced. This would imply that not only geographic distance but also ecological similarity 
predicts genetic differentiation, a pattern widely observed in nature (Sexton et al. 2013). 

The current state-of-the-art method for making predictions of gene flow on continuous 
landscapes is to compute so-called resistance distances (McRae and Beier 2007). The 
nomenclature and formalism of this approach derives from a mathematical correspondence 
between electrical networks and certain quantities of reversible random walks. It turns out that if 
one equates the movement rates of a random walk between nodes in a network with the 
conductances of wires connecting those nodes, then the effective resistance between two points 
of the network (what one would measure using a volt meter) is equal to a biologically important 
parameter known as the mean commute time for the random walk, i.e. the mean time until a 
random walker, beginning at one of the points, first returns to its starting point, after having 
visited the other point (Nash-Williams 1959). The results can depend on the discretization used 
and the resulting random walk model is metaphorical, not predictive. We used the fact that this 
correspondence, usually stated for discrete networks, carries over to continuous models, where 
the random walk is replaced by its continuous counterpart, a diffusion process whose movement 
rates depend on local properties of the inhomogeneous medium (in our case, the local landscape 
and its quality as tortoise habitat). This, combined with robust approximation of discrete random 
walks with continuous diffusions (Oblój 2004), allows us to bypass both drawbacks. The 
resulting resistance distance is then a powerful summary of gene flow across the landscape, since 
it integrates movement along all possible paths between the two locations. 

The resistance distance has been shown to be a useful summary, but we would like to extract 
concrete predictions from it for effective management decision-making. Each generation since 
the most recent common ancestor provides an opportunity for mutations to occur that are 
inherited by only one of the sequences, and so mean sequence divergence provides an estimate of 
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the mutation rate multiplied by the average time since the most recent common ancestor, across 
the genome (Hudson 2007). Focusing for a moment on a particular point on the genome, the time 
since the most recent common ancestor of two sequences for that part of the genome can be 
found by following the lineages back until they meet in their most recent common ancestor. 
Following a lineage backwards in this way can be seen as a random walk: the probability the 
lineage moves from location x to location y in a generation is the probability that a tortoise living 
at x has inherited the relevant bit of genome from a parent living at y. Intuitively, the motion of a 
lineage backwards in time looks like a random walk that is determined by the dispersal patterns 
of young tortoises, except that going backward in time, lineages are more likely to move towards 
better habitat, since more successful offspring are produced in such places. One important caveat 
is that it is known that under reasonable population models – in particular, those that show 
significant patterns of isolation by distance – the motions of two nearby lineages are not 
independent and therefore require a model that incorporates this non-independence (Barton, 
Depaulis, and Etheridge 2002). However, it is reasonable to assume that the motion of lineages is 
independent until the point that they are sufficiently close to each other in their path backwards 
to a common ancestor. Then, we can decompose the time to most recent common ancestor into 
two parts: the time until two lineages are close to each other, and the time from when they are 
close to each other until they find a common ancestor. This first part determines how sequence 
divergence decreases with distance, while the second part determines typical divergences 
between nearby individuals. 

To relate this to resistance distance, we approximate the mean time until two lineages are 
close to each other by the average commute time. Specifically, we approximate the mean time 
until the lineages of tortoises at current locations x and y are within distance d of each other by 
one-half the sum of the mean time that a random walk begun at x takes to get within distance d of 
y, and the same quantity for y with respect to x. If the landscape is homogeneous then this 
approximation is exact, since the displacement between two independent walks is itself a walk 
that moves at twice the speed. On an inhomogeneous landscape it is a reasonable approximation, 
except in extreme circumstances (like very strong barriers to movement). 

We provide the details and formal specification of this model of landscape resistance in 
Appendix 2. Briefly, we defined a random walk model whereby environmental rasters were each 
given two parameters that affect movement rates in the random walk: a stationary distribution 
and a relative jump rate to adjacent pixels. The application of a given set of stationary 
distribution and relative jump rate parameters (as well as a single overall scaling parameter) 
generates a resistance surface on the landscape over which commute times between tortoises can 
be measured. Since commute times are proportional to the coalescence times for pairs of 
tortoises, we can evaluate the model by testing how well random walk commute times over the 
generated resistance surface correlate with observed genetic distances. The optimal parameters 
for a set of landscape rasters are determined by minimizing the weighted mean square error for 
the set of tortoises used to fit the model. 
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Landscape Resistance Models 
We used the above procedure to fit a large number of landscape models, varying which 

landscape layers were used, which tortoises were used to fit the model, and which habitat mask 
was used. In all cases, we masked (that is, eliminated) regions to the east and south of the 
Colorado River, since they are now considered to be in the range of Gopherus morafkai. For 
reference, the tortoise habitat model of Nussear et al. (2009) fit a maxent model using 16 
landscape variables, of which the most important were elevation (59.7%) and annual growth 
potential (AGP, 19.3%). 

Each model fitting procedure produced a random walk model of tortoise lineage movement, 
which we evaluated in a common framework, measuring model fit to all tortoises using weighted 
median residuals. For an exact description, see Appendix 2 under Evaluating Landscape 
Resistance Models. We used median, rather than mean-squared, residuals to reduce the effect of 
statistical (and biological) outliers, and we weighted these so that the measure of goodness of fit 
assigns appropriate weights to each geographic area (unweighted would significantly upweight 
locations with more samples). Furthermore, we only use comparisons within each of the two 
major regions that we identified (north and south of the Ivanpah), because, as argued below in 
the results section on population structure, the relationship between the two regions has a deep-
time historical component that is not likely to be a product of temporally homogeneous tortoise 
movement. 

We evaluated a large number of possible landscape resistance models. Below is a quick 
summary of the procedure that led us to the best-fitting model. 

First, we found that models fit using tortoises from both regions (loosely North and South) 
performed poorly: none could explain the two-cloud pattern seen in Figure 5. This is not 
surprising, because no available landscape layer accurately differentiates between those two 
regions. There is a confluence of not-insubstantial physical barriers around the break between the 
two regions (the mountains that define the Ivanpah Valley and the Colorado River), but the 
constriction in tortoise passage induced by these appears to not be sufficient to cause the genetic 
discontinuity that we detected. Furthermore, remaining tortoise population structure is seen to be 
much more significant in the north than in the south, and combining them into a single analysis 
confounds these differences. To deal with these differences we proceeded by fitting models using 
only comparisons between tortoises in the same group (north-north, or south-south comparisons). 
This is reasonable because we expect nearby comparisons to provide more information about 
local movement patterns than comparisons between tortoises on opposite sides of the range. 

Next, we evaluated the effects of the choice of habitat mask, i.e. the region where movement 
was allowed to occur. We compared two choices: (a) the region for which the habitat model of 
Nussear et al. (2009) had habitat score above zero; and (b) the region below 2,000m in elevation. 
The first mask is strictly contained within the second; in both cases we also restricted to a 
reasonable bounding box (see the extent of the elevation layer in Figure 4). We found that the 
two different choices of mask gave indistinguishable goodness-of-fit values, and so proceeded 
with (a), the habitat mask based on Nussear et al. (2009), as this represents the best available 
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biological prior knowledge of areas where tortoises are likely to avoid or perish, and which 
therefore should be excluded from our model. 

Finally, we examined the impact of including different habitat layers in the model. We 
explored a wide variety of layers, but ultimately the best-fitting models all included only 
transformations of the habitat quality derived from Nussear et al. (2009). Therefore, we chose as 
our current best-fitting model the one providing the best goodness-of-fit using only 
transformations of the Nussear et al. (2009) habitat quality. (As discussed below, other models, 
including those with longitude, gave very similar results.) We favor this both because of its 
relative statistical simplicity and because it keeps our landscape model closely linked to the best 
available habitat model as derived by the desert tortoise biological community. 
 
Evaluation of Alternatives 

We then used the best-fitting model to evaluate how development of particular areas under the 
DRECP would affect gene flow between different areas of the tortoise range. To do this, we 
evaluated changes in gene flow between each pair of a large set of reference points spread 
uniformly across the range predicted by Nussear et al. (2009), and we then used these to quantify 
both the overall reduction in gene flow and the areas that would be most affected (more details 
below). Some analyses considered “chunks” of proposed development areas within each of the 
five Alternatives separately. The process by which we generated these proposed development 
chunks is described in Appendix 3. In modeling how development on these “chunks” would 
affect gene flow, we assume that they represent zones of inaccessible habitat for tortoises, in the 
same way that areas outside the range boundary are modeled as inaccessible. Under our 
modeling strategy, a tortoise that wandered into a chunk boundary would reflect off of that 
boundary, much as it would if the development were surrounded by an impenetrable fence. Other 
modeling strategies are possible, and reasonable ones might include a pure mortality scenario 
(where tortoises have free access to development chunks, but die upon entry) or a semi-
permeable boundary (where some fraction of tortoises can cross the chunk). Given the 
uncertainty in exactly how development might occur in each chunk, we feel that our approach is 
a reasonable starting point, since it has minimal effects on demography (tortoises do not die 
when they reach a chunk boundary) but reasonable effects on gene flow (tortoises presumably 
cannot cross a large solar installation).  

To quantify gene flow, we used the mean commute time to a 15-km circle (or neighborhood), 
since this is the same quantity used to fit the model. As discussed below, for a pair of points 𝑥 
and 𝑦, this is equal to one-half the sum of the mean time for a random walk from 𝑥 to get within 
15 km of 𝑦, and the mean time for a walk from 𝑦 to get within 15 km of 𝑥. This can be 
concretely interpreted as the mean time since a tortoise at one location has inherited genetic 
material from a tortoise near the other location, along a particular lineage. Note that the 
neighborhood approach makes this measure independent of population density. 
 
Reference Locations 
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Our samples of tortoise tissue were not distributed uniformly across the range, and uneven 
sampling can have profound effects on some population genetic estimates and biological 
interpretations. To evaluate the effects of our sampling in an integrated way across the entire 
range, we chose uniformly spread reference locations as follows. First, we found the area with 
habitat quality of at least 0.3 in the Nussear et al. (2009) model, since those represented 
relatively high-quality tortoise habitat. Then, we sampled 10,000 points uniformly from across 
the enclosing rectangle, and discarded all but a maximal set of points that fell within the area of 
high habitat quality and had no two points within 10km of each other. This resulted in 202 points 
uniformly spread across the area of high-quality habitat. We additionally removed those points 
predicted by our model to be in isolated areas, defined as the minimal set of reference points 
such that after removing them, all remaining mean 15 km commute times were smaller than 
3×10! years (the maximum observed divergence between any pair of samples was slightly less 
than 1.5×10!, so a distance of 3×10! would be equivalent to a separation of twice the width of 
the current range). The remaining points, shown on a map of habitat quality from Nussear et al. 
(2009), are shown in Figure 3. 

	  
Figure 3. Reference points used to compute changes in gene flow across desert tortoise habitat. 

Measure of Isolation 
The mean commute times described above allow us to quantify the effect that particular 

development scenarios will have on gene flow between any pair of locations in the range. 
However, this is not yet a measure of isolation. To quantify isolation, we need to summarize the 
total effects on each location across all of our sample points shown above. Consider, for instance, 
what would happen if a valley were to be blocked off to tortoises from the outside: mean 
commute times between the valley and the outside would drastically increase, but mean 
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commute times within the valley would decrease, since tortoises within the valley can no longer 
take longer commutes outside the valley. Furthermore, and as we will see below occurs in 
practice, the act of removing a piece of habitat usually reduces commute times (or increases gene 
flow) between distant locations, because there are now fewer locations for transiting tortoises to 
visit. However, these commute times to very distant locations are not biologically relevant or 
important, at least on the time scale of human-mediated disturbances, simply because it takes 
thousands or millions of years for genes to commute to these distant locations, and that is not the 
scope of concern of our analyses. For these reasons, we say that a location becomes more 
isolated if mean commute time increases to the bulk of the range. We quantify this by identifying 
for each reference location the closest 40% of other reference locations, measured by commute 
time, and averaging the difference in commute time induced by removing a particular piece of 
habitat across those locations. This limits our summary statistics to a biologically reasonable 
region of space and time. 

Concretely, suppose that ℎ!,! is the commute time between reference locations 𝑖 and 𝑗, ordered 
by proximity to location 𝑖, so that ℎ!,! ≤ ℎ!,! ≤ ⋯ ≤ ℎ!,!"!. Then, since 202×0.4 ≈ 80, our 
measure of isolation of location 𝑖 is 

𝐼 𝑖 =
1
80 ℎ!,!

!"

!!!

. 

To interpolate values observed only on a subset of locations (e.g., the isolation values of the 
reference locations), we fit a thin plate spline model using the function fastTps in the fields 
package in R, which uses compactly supported kernels (with range 200km). 
 
Results 
Overview 

The sequencing strategy we followed produced an immense amount of data, which will serve 
as a tremendous resource for tortoise biologists, planners, and desert ecologists more generally. 
Additionally, the genetic data generated by this project will be used to improve the genome 
assembly of the desert tortoise currently underway by Kenro Kusumi and Dale Denardo at the 
University of Arizona. When complete, all of our data will be freely available both in raw form 
and as summary statistics on a desert tortoise genome project web page. Of course, usefulness of 
data is not measured solely in terabytes. As detailed below, descriptive analyses of the data show 
that genomic measures of relatedness can identify geographic population structure, revealing 
both population splits and fine-scale structure on the scale of kilometers. 
 
Sampling 

We amassed a collection of 270 tortoise tissue samples from throughout their range in the 
Mojave Desert (Figure 1). In our sampling, we attempted to balance an even spatial sampling of 
tortoises (increasing the probability of observing spatial structuring of genetic diversity 
partitioned by geography or environment) with a dense sampling of tortoises in regions of 
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conservation importance (which also allows us to observe patterns of genetic differentiation on 
local spatial scales). The mean distance between a pair of tortoises was ~141.8 km, with three-
quarters of the distances less than 199.3 km, and ranging between 0 km and 464.8 km. The 
sampling was dense: the mean nearest-neighbor distance between tortoises was 6.4 km, three-
quarters of the tortoises had another within 8.4 km, and only 10 did not have another tortoise 
within 20 km.  
 
Genetic Data 

We obtained a total of 1.29 trillion base pairs of genomic sequence data from 28 paired-end 
100bp Illumina HiSeq High Output lanes. Total bases sequenced per tortoise ranged from 1.71 
billion bases to 13.91 billion bases, with a mean of 4.73 billion bases and standard deviation of 
1.62 billion bases. Of this raw data, an average of 86.74% of reads passed Illumina’s CASAVA 
filter for each individual tortoise (standard deviation = 4.54%). After trimming low quality reads 
and merging overlapping read pairs as outlined in “Methods” above, the total number of bases 
going into the mapping stage ranged from 1.37 billion to 9.93 billion (average = 3.36 billion, sd 
= 1.12 billion). 

 
Mapping statistics 

Mapping reads to the Galapagos tortoise genome was quite successful, with an average 
mapping rate of 95.67% (sd=0.67%). Using the ~2.2 billion bp reference size of the Galapagos 
tortoise as a proxy for genome size, this yielded a mean sequencing coverage of 1.45X (sd=0.48, 
min=0.59X, max=4.28X).  
 
Population Structure 

A geographically explicit way of looking at the relationship between genetic and geographic 
distance is to use PCA to summarize the major axes of genetic variation on a landscape. We 
show this in several ways. The positions of the samples on the first two principal components are 
shown in the inset of Figure 4. The most obvious pattern is the division of the samples into two 
large clusters by PC1, which corresponds to a fairly sharp division between tortoises to the north 
and south of the New York and Providence mountains (the eastern/southern border of the 
Ivanpah valley), with a few intermediate tortoises (coded as purple/pink) occurring in the Kelso 
area and the vicinity of Searchlight, NV. As the insert map of the Ivanpah region shows, these 
mountains form a strong barrier to tortoise dispersal; as a consequence PC1 accounts for about 
12.2% of the total genetic variance in the data set. These two groupings also explain the two 
clouds of points that are evident in the overall IBD plot in Figure 5; genetic comparisons of pairs 
of tortoises between these two groups show a significantly higher divergence than comparisons 
of tortoises at comparable distances within each group. 
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Figure 4. Tortoise sample map with samples colored continuously by their score on PC1. Additionally, samples on the left 
side of PC1 (mostly the red samples) were divided again into two sets based on PC2, with samples in the top half plotted 
with triangles and the other samples plotted in circles. The Ivanpah Sample Map is an expansion of this area that shows 
how genes move around the mountains in more detail. Background colors show elevation. 

The first principal component is most striking, but others similarly reflect additional 
geographical subdivisions. PC2 further subdivides the southern tortoises roughly into eastern and 
western groups (red triangles vs. circles in Figure 4) on either side of the low-lying Cadiz valley 
lakebeds and accounts for about 2.0% of the total genetic variance. Subsequent principal 
components further subdivide the range, generally following geographical barriers such as 
mountains. These sub-groupings account for additional substructure seen in Figure 5, and 
represent geographic patterns of differentiation above and beyond that explained by distance 
alone. Overall, our emerging hypothesis is that relatedness between tortoises is well predicted by 
distance as traversed by tortoises on the landscape and that the genomic data contain a great deal 
of information on how to define distance in a biologically meaningful way. 
 
Isolation by Distance 

The mean density of nucleotide differences between tortoises (“pairwise divergence”) in the 
sample is 5.4 differing sites per kilobase, and varies between 3.3 and 5.9 sites per kilobase. This 
measure of relatedness, when compared to geographic distances between tortoise pairs, 
demonstrates that tortoises sampled nearby each other are more closely related than ones 
sampled farther away (Figure 5) – the classic “isolation by distance” pattern (IBD; Wright 1943).  
Overall, pairwise divergence increases by about 0.0011 differences per kilobase for each 
additional kilometer of separation (Figure 5; p<10-16). The “groups” referenced by Figure 5 are 
shown as discretely colored purple and blue dots in the left panel, and are determined by 
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discretizing the samples by their scores on PC1 as shown in Figure 4.

 
Figure 5. Showing the slope of isolation by distance both within each group and between the two groups. Groups are 
defined by their scores on PC1 and are shown in the left panel. 

This positive correlation of genetic differentiation and geographic distance extends to the 
smallest spatial scales: within the Ivanpah valley, where the densest cluster of samples occurs, 
the relationship between pairwise divergence and geographic distance is likewise highly 
significant, showing an increase of 0.0024 differences per kilobase for every extra kilometer of 
separation (Figure 6; p < 10-16).  

 
Figure 6. Pattern of isolation by distance solely within a small geographic range in the Ivanpah Valley. The map on the 
right shows the location of each tortoise sample.  

Model fit 
Of the many models that we tested, the one with the best fit included the effects of only one 

layer: a binary layer that takes the value 1 if habitat quality (from Nussear et al. 2009) is greater 
than 0.3, and zero otherwise. (More extensive model fitting results are given below.) This model 
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allows four rates of tortoise movement: on low quality habitat, on high quality habitat, from low 
to high quality habitat, and from high to low quality habitat. The weighted median residual value 
for this model was 2,133 years, while the same quantity for the linear regression of pairwise 
divergence against great-circle geographic distance was 18.7% greater. The difference measured 
by weighted mean squared error was even stronger: a 53.7% difference. This indicates that the 
landscape model incorporating a binary indicator of tortoise habitat quality as defined by 
Nussear et al. (2009) did a significantly better job of predicting genetic relationships between 
tortoises than did straight-line distance. Although additional, more complex models can and 
should be tested, we used this two-state model based on its simplicity, its biological realism, and 
its statistical performance. 

Effect on gene flow of removing habitat 
As discussed in the Methods, we quantify the effects on gene flow of removing particular 

pieces of habitat through the changes in mean time for the random walk that models the time, in 
years or generations, that it takes for tortoise lineages to travel between each pair of points, 
averaged across reference locations. These analyses provide the tools by which we can 
directly test the effects on tortoise connectivity of alternative habitat modification plans as 
outlined in the DRECP.  

Effects on gene flow to single locations: examples 
To show how this approach works, we consider how the removal of all of the habitat in the 

Preferred Alternative Plan would affect gene flow to a single location. In the left panel of Figure 
7, the star located in the far western Mojave is the single location, and each map pixel is colored 
according to the mean time to reach the 15km circle surrounding the star in the map. 
Unsurprisingly, it takes longer to reach locations that are more distant from the star. On this map, 
the potential development areas of the DRECP Preferred Alternative are shown in grey, and the 
mapped mean times have been computed after blocking these areas to possible tortoise 
movement. The middle panel shows how this differs from the scenario where these development 
areas are not blocked: each area is colored according to the difference between the mean time to 
reach the starred area before and removing the development areas. As this map demonstrates, 
most parts of the range are around 40,000 years more distant (in red), although the nearby area 
that is also trapped between two potential development areas becomes slightly closer (in pale 
blue). The right panel shows the relative change: here, colors correspond to the difference 
(middle panel) divided by the mean time without the potential development areas removed. As 
might be expected, the relative effect is greatest near the star, since more distant areas are 
relatively less affected by a change near the star.  
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Figure 7. Showing the effects on hitting times to a single spot in the western Mojave as a result of removing the land in the 
preferred alternative. The dark green areas in the left panel were deemed inaccessible under this model.  

Figure 8 shows the same set of analyses for a reference location near the center of the Mojave, 
again marked with a star. Here, we see that most of the Mojave actually becomes closer (blue in 
the center panel): this is because removing a portion of habitat means that there are fewer 
available locations for ancestors to live, and so all else being equal, two tortoises are expected to 
have ancestors living nearby to each other more recently. However, note that there is a small 
“shadow” of increased distance (red) just on the other side of a nearby potential development 
area, reflecting the reduced regional gene flow in this area that would be induced by blocking off 
this piece of habitat. 
 

 
Figure 8. Showing the effects of hitting times to a single spot in the central Mojave as a result of removing the land in the 
preferred alternative. 

Combined effects on gene flow across the range 
To summarize the effects on gene flow of blocking off particular regions of the habitat, we 

average the difference in gene flow with and without the possible barriers, across the nearest 
40% of the other reference locations. We chose the closest 40% as a reasonable compromise 
between the entire range of high-quality habitat of the Mojave (which is too large to reasonably 
affect gene flow for a tortoise) and a region immediately surrounding an animal (which does not 
allow for the cascading effects across generations of blocking gene flow). We computed this 
measure of isolation for each reference location and interpolated it to the remainder of the map; 
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this is shown on the left of Figure 9. We refer to this statistic as the mean difference nearby; it 
quantifies the mean difference in gene flow for the biologically relevant 40% of tortoise habitat 
with and without a subset of habitat removed. On the right we show the relative difference 
nearby, calculated as the mean (over the same 40% of locations) of the ratio of this difference in 
gene flow to the gene flow (commute time) in the original habitat without the barriers. These 
figures show the predicted impacts of removing the proposed development chunks of land in the 
DRECP Preferred Alternative. 

 
Figure 9. Mean and relative difference in commute times across the range as a result of removing the land in the 
preferred alternative. 

In both maps, the darkest red areas are more distant from other, nearby portions of the range 
by 10,000-15,000 years. This is a very strong separation, because most parts of the range are 
separated by less than 10,000 years, as seen in the example commute time plots above.  
 
Comparing total effects of each alternative 

We can now apply this same approach to each of the four Alternative plans in the DRECP, 
and compare them to the Preferred Alternative. We plot these in Figures A3-A6. 

In order to be able to rank these alternative development plans, we show several summary 
statistics for each. For each alternative, areas are given in km2 and as a percentage of the total 
tortoise habitat. We calculated and tabulate each of the following:  

• habitat removed is the total amount of area either in possible development areas or 
completely isolated from the rest of tortoise habitat under that alternative (this occurs if, 
for example, land is developed in a ring, with an undeveloped hole in the center of the 
development) 

• isolated is the total area for which the gene flow to nearby areas has increased (regardless 
of the amount by which it has increased) 
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• isolation is the mean amount by which the commute time has increased to nearby areas 
across this area where it has increased; it measures the intensity of decrease in gene 
flow 

• strongly isolated is the total area to which gene flow has strongly decreased; we define 
“strongly” as the mean commute time to nearby areas increasing by at least 1,500 years 

• relative isolation is the ratio of the amount by which commute time has increased to 
the commute time without blocking any areas, averaged over the set of nearby 
locations 

 
Alternative Habitat 

removed 
(km2) 

Habitat 
removed (%) 

Isolated 
(km2) 

Isolated 
(%) 

Isolation 
(years) 

Strongly 
isolated 
(km2) 

Strongly 
isolated (%) 

Relative 
isolation 

Preferred 5061 (3.7%) 74658 (54.2%) 729 5303 (3.8%) 18% 
Alternative 1 2338 (1.7%) 65677 (47.7%) 643 2864 (2.1%) 9% 
Alternative 2 6772 (4.9%) 92242 (66.9%) 950 14422 (10.5%) 26% 
Alternative 3 3401 (2.5%) 70976 (51.5%) 882 4416 (3.2%) 16% 
Alternative 4 4458 (3.2%) 71017 (51.5%) 760 5681 (4.1%) 17% 

 
     Several points are worth noting in this table. First, as a single summary statistic of the effect 
of a development alternative, we highlight the Isolation (in years) column of the table, which 
summarizes the overall increase in isolation, or the decrease in gene flow, for each alterative. 
Second, every alternative increases the time for genes to traverse the landscape by many 
hundreds of years, approaching 1000 years for Alternative 2. These are large numbers 
representing very significant effects across dozens of tortoise generations. Third, Alternative 1 is 
clearly the least harmful (which makes sense given that it is the smallest acreage), and 
Alternative 2 is the most harmful. And fourth, the Preferred Alternative has a very substantial 
effect on tortoise connectivity (729 years). 

We also call attention to the Relative Isolation, particularly in comparison to the 
percentage of habitat removed. In most cases, the effect in terms of Relative Isolation is about 
five times the percentage of habitat removed, reflecting the extremely strong, cascading effects 
that development has on tortoise movement. For example, for the Preferred Alternative, 
removing 3.7% of the tortoise habitat leads to an 18% increase in relative isolation.  
 
Effects of removing each chunk 

Using the same analytical approach, we also consider the effects of removing each “chunk” of 
habitat for the Preferred Alternative. Figure 10 is a key showing where each chunk is found 
under the Preferred Alternative. The mean isolation is a reasonable measure of the total effect of 
removing a given chunk, but it must be interpreted with some caution. In particular, the absolute 
size of the mean isolation only measures this chunk, in isolation, without the effects of any other 
chunk that might be removed. There are many instances where the impacts of multiple chunks 
considered together have a much larger impact than the sum of the chunks individually, 
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reflecting the synergistic negative effects that can result when multiple chunks are removed. We 
provide this table to show how individually chunks may have very different impacts; to 
understand the impacts of removing a set of chunks, each potential combination of removal 
areas must be modeled and evaluated, and we have not done that here.  

We calculated and tabulate each of the following:   

• habitat removed is the total amount of area either in possible development areas or 
completely isolated from the rest of tortoise habitat for this chunk 

• isolated is the total area over which the gene flow to nearby areas has increased 

• mean isolation is the mean amount by which the commute time has increased to nearby 
areas across this area where it has increased; it reflects the decrease in gene flow for each 
chunk in the analysis 

• max isolation is the maximum amount by which the commute time has increased between 
any two nearby reference locations given the removal of this chunk 

 Habitat 
removed (km2) 

Habitat 
removed (%) 

Isolated 
(km2) 

Isolated 
(%) 

Mean 
Isolation 
(years) 

Max isolation 
(years) 

Whole 
preferred 
alternative 

5061 (3.7%) 74658 (54.2%) 729 15787 

chunk 31 55 (0.0%) 3129 (2.3%) 10454 11002 
chunk 32 6 (0.0%) 3129 (2.3%) 549 847 
chunk 25 987 (0.7%) 4406 (3.2%) 126 890 
chunk 7 481 (0.3%) 41928 (30.4%) 110 1865 
chunk 13 299 (0.2%) 87719 (63.6%) 65 1627 
chunk 16 441 (0.3%) 34920 (25.3%) 60 1758 
chunk 14 512 (0.4%) 38947 (28.3%) 57 1069 
chunk 5 148 (0.1%) 64315 (46.7%) 51 994 
chunk 27 336 (0.2%) 34510 (25.0%) 51 867 
chunk 11 204 (0.1%) 71582 (51.9%) 40 1066 
chunk 4 128 (0.1%) 54457 (39.5%) 29 726 
chunk 29 95 (0.1%) 39807 (28.9%) 24 555 
chunk 17 173 (0.1%) 60235 (43.7%) 20 277 
chunk 28 128 (0.1%) 40702 (29.5%) 20 399 
chunk 18 219 (0.2%) 95912 (69.6%) 19 371 
chunk 30 121 (0.1%) 41658 (30.2%) 15 298 
chunk 22 98 (0.1%) 34762 (25.2%) 10 269 
chunk 8 108 (0.1%) 82666 (60.0%) 8 135 
chunk 15 23 (0.0%) 21228 (15.4%) 7 243 
chunk 20 65 (0.0%) 70303 (51.0%) 6 144 
chunk 3 35 (0.0%) 31393 (22.8%) 5 67 
chunk 9 17 (0.0%) 21228 (15.4%) 4 126 
chunk 10 23 (0.0%) 35420 (25.7%) 3 62 
chunk 12 28 (0.0%) 58859 (42.7%) 3 77 
chunk 21 26 (0.0%) 95748 (69.5%) 2 34 
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chunk 23 18 (0.0%) 49594 (36.0%) 2 28 
chunk 24 17 (0.0%) 33530 (24.3%) 2 75 
chunk 2 120 (0.1%) 35857 (26.0%) 0 0 
chunk 34 1 (0.0%) 91766 (66.6%) 0 1 
chunk 35 1 (0.0%) 100854 (73.2%) 0 2 
chunk 0 0 (0.0%) 0 (0.0%) - 0 
chunk 1 0 (0.0%) 0 (0.0%) - 0 
chunk 6 31 (0.0%) 0 (0.0%) - 0 
chunk 19 81 (0.1%) 0 (0.0%)   - 0 
chunk 26 26 (0.0%) 0 (0.0%) - 0 
chunk 33 0 (0.0%) 0 (0.0%) - 0 
 
Here, the chunks are ordered by their Mean Isolation effect, from largest (most detrimental) to 
smallest (least detrimental). The primary point to take from this analysis is that both the amount 
of habitat removed and its spatial configuration are important determinants of the effect of a 
chunk, or project, on tortoise gene flow. For example, chunks 31 and 32 are both quite small in 
terms of area, but have extremely large effects on tortoise gene flow as reflected in their mean 
isolation effect size. This presumably reflects their position near the mouth of the Owens Valley, 
and their effective isolation of that entire piece of tortoise habitat. In contrast, chunk 25 is 
relatively large, but has a much smaller effect on mean isolation than chunks 31 or 32.  
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Figure 10. Spatial configuration of the proposed development chunks (see Appendix 3). 

 
Comparison of all chunks across all alternatives 

Similarly, we compiled a ranking of proposed development chunks across all five alternatives. 
This information may be useful if the final development plan mixes and matches chunks 
from different alternatives. However, it is critical to note that the influence of developing 
certain regions of the landscape is not additive. Interactions between chunks, such as several 
chunks directly adjacent to one another that form a long barrier to gene flow, may have a 
significantly higher impact on gene flow than the sum of those individual chunks alone. The best 
available methodology for assessing a landscape-level development plan is to evaluate the effects 
of removing all of the proposed development chunks simultaneously. The results showing the 
individual impacts of the different putative development chunks across all of the alternatives can 
be found in Appendix 4. 
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Discussion 
The data we have generated for this project, including over 1.2 trillion base pairs of DNA 

sequence data and 80 high-resolution raster data layers covering much of the Mojave Desert will 
be an unparalleled resource both for informing our understanding of the natural history and 
ecology of the desert tortoise and for guiding conservation actions. In addition, we believe the 
sequencing and genetic inference methods described here will serve as a valuable template for 
other researchers working in conservation genomics, landscape genomics, and wildlife biology 
who wish to learn about the ecology of their study organism through the power of genetic data.  
This may be particularly true for research on long-lived organisms with cryptic life histories, for 
which traditional methods of assessing population density and dispersal are difficult and costly. 

There are several important caveats that should be kept in mind with respect to our approach. 
First, we model the development chunks, as we calculated them (see Appendix 3), as project 
areas with impenetrable boundaries that completely repel tortoise movement, but never kill or 
otherwise reduce tortoise fitness. Other modeling strategies are possible, and they will have 
different effects on the predictions of gene flow reduction or increase after development. Second, 
although we include the full geographical range of G. agassizi in our analysis, we only model 
development in the California portion of its range, and only that development identified in the 
possible DRECP scenarios. In particular, potential development in Nevada will have 
consequences for gene flow in California, and ideally scenarios for both states should be 
evaluated simultaneously to develop a comprehensive, range-wide picture of impacts on the 
species. Finally, the impact of the reduction in gene flow that we model on ecological and 
demographic processes, and therefore on population viability, is not currently known. Modeling 
changes in population viability is a critical next step in our research. 

Given these caveats, we feel that certain biological conclusions of key importance to Mojave 
desert tortoise conservation generally, and the DRECP in particular, can be made at this time. 
 
1. By sampling the entire tortoise genome, we can detect subtle differences in population 
structure that have previously been impossible to detect with more conventional genetic and 
genomic tools. Our simulation results in Figure 2 show this result quite clearly, and provide a 
primary motivation for continuing to work at this genomic scale.  
 
2. We detected a strong signal of isolation by distance among tortoises, and that signal is 
consistent across spatial scales and habitat regions across the range of the tortoise. Even within 
the relatively homogeneous Ivanpah Valley, we found a strong, statistically significant 
relationship between genetic and geographic distances. We conclude from this result that even 
tortoise populations within uninterrupted basins are not "panmictic", allowing the potential for 
local adaptation regionally in the desert. We also conclude that the occasional long-distance 
dispersal events that have been observed for the species do not seem to be leading to large areas 
of admixture and free interbreeding. Rather, there appears to be a general relationship between 
genetic isolation and geographic distance that scales across both large and small landscapes. The 
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extent to which locally adapted populations are, or are not, exchangeable is an important avenue 
for future research, given the frequent use of translocations as a management tool in tortoises. 
 
3. Our PCA analysis identified three primary groupings of tortoises, corresponding to a 
north/south division, and within the southern group, and east-west division (inset of Figure 4). 
Certain aspects of these groupings were also suggested in previous analyses (Hagerty and Tracy 
2010), although the concordance is not perfect. In particular, the split between the California 
Cluster and the Las Vegas Cluster of Hagerty and Tracy is almost exactly replicated on PC1, and 
the NC, WM, and EC splits among the California Cluster are recovered by PC2. Our data 
indicate that the North-South groups comprise two key tortoise management units, and the East-
West division is an additional genetic grouping. For the North-South grouping, our data suggest 
that the mountains separating the Ivanpah Valley from the surrounding desert habitat constitute a 
major barrier to gene flow. Within the southern unit, the Cadiz Valley (and its extension to the 
north and west, the Baker Sink, see Hagerty and Tracy 2010) has similarly been a low-elevation 
barrier to gene flow. Both of these suggest that if alternative energy installations could be placed 
within the New York/Providence mountains or the Cadiz Valley, they would interfere relatively 
little with current or past tortoise metapopulation dynamics, but that installations in the corridors 
of tortoise habitat around these could easily isolate these areas. Our data further indicate that 
these three sets of tortoises should best be considered three independent management units for 
tortoise conservation. Other units may emerge with additional tortoise sampling or analysis, but 
these three are clear.  
 
4. Our landscape genetic inference framework allowed us to estimate the relative effects that the 
different development alternatives put forth in the DRECP will have on desert tortoise gene flow 
in the Mojave. Alternative 1 was found to have the least effect on tortoises, followed in order 
by the Preferred Alternative, Alternative 4, Alternative 3, and Alternative 2. However, we 
also note that the effects of all five of the alternative development plans have profound 
effects on tortoise gene flow; the additional time required for gene flow ranges from 650-
950 years across alternative plans, and the relative isolation from 9% to 26%. These 
numbers far outstrip the actual amount of lost habitat for each plan (1.7%-4.9% of the 
total habitat for the tortoise), and emphasize the cascading effects that development can 
have on landscape connectivity. 
 
5. Within the Preferred Alternative, many of the individual proposed development chunks have 
relatively little impact on desert tortoise connectivity when considered in isolation, although 
some have extremely high impacts. Chunks 31, 32, 25, and 7 have (in order) the greatest impact 
on tortoise connectivity, and should be examined closely before they are implemented. One of 
these, chunk 31 is located at the entrance of the Owens Valley, and this chunk is having a 
disproportionate effect on gene flow across the whole range of the tortoise, because it is 



31 

effectively isolating the Owens Valley from the rest of the Mojave Desert. The general lesson 
from these analyses is that development that isolates regions should be avoided.  
 
6. Across all alternatives, we identified and evaluated 214 development chunks, in terms of their 
individual effects on tortoise connectivity, and we encourage using this list along with other 
variables as a first pass for considering the order of approval of projects and habitat patches. 
However, we again emphasize that this list is for each chunk by itself, and it ignores the 
synergistic effects of developing multiple chunks.  
 
7. Future analyses can, and should, investigate the isolating effects that multiple habitat chunks 
have when considered together. By sequentially adding development chunks and subdividing 
chunks, our work can help develop both a better final build-out and a gradual path to that build-
out that minimized impacts on tortoise connectivity for as long as possible across the Mojave. 
Further direction from CDFW would be valuable in delineating which particular combinations of 
proposed development chunks would be useful to evaluate. 
 
8. The tools we have developed can be used to predict the local effects of gene flow of specific 
development plans, and to recommend specific mitigation procedures, including critical issues 
like the location of habitat corridors. Not only selection of development areas (in the DRECP), 
but also situation of development within these areas in subsequent planning processes, will be 
key to reducing the impact of renewable energy development on the long-term viability of desert 
tortoise populations. 
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Appendix 1 
 

GIS Raster Data 
We compiled and synthesized a total of 83 environmental raster data layers for this study area. 

These rasters fell in five principal categories: anthropogenic, biotic, climatic, topographic, and 
soils. We briefly describe these layers below. The resolution of the layers varied from 10m to 
800m, although they were all standardized to 30m. For a list of all 83 layers, including a brief 
description of each, see Figure A7. 
Anthropogenic layers: 

Our anthropogenic GIS raster dataset included 13 layers, sourced or derived from the 2012 
TIGER Census road classification (http://www.census.gov/cgi-bin/geo/shapefiles2012/main). 
The data describe the spatial distribution of roads in the Mojave ranging from 4WD trails and 
bike paths to primary roads and their on- and off-ramps.  These layers were also used to calculate 
the Euclidean distance across the landscape to the nearest road. Also included was one layer 
from the National Land Cover Database 2011 (http://www.mrlc.gov/nlcd2011.php) that depicts 
the percent of impervious cover per cell. All anthropogenic layers have a resolution of 30m. 
Biotic layers: 

Our biotic GIS raster dataset included four layers describing the distribution of plant material 
across the Mojave.  Three of these layers (shrub/scrub, grass/herb, and tree cover) were sourced 
from the National Land Cover Database 2011 (http://www.mrlc.gov/nlcd2011.php) and have a 
resolution of 30m.  The fourth layer, annual growth potential, was calculated from the Moderate 
Resolution Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) following the 
methods of Wallace and Thomas (2008) and Nussear et al. (2009).  This 250m resolution layer 
serves as a proxy for annual plant biomass and was aggregated down to 30m resolution. 
Climatic layers: 

The climatic GIS raster dataset consisted of 52 layers describing the spatial distribution of 
climatic variables, including minimum, maximum, and mean temperature as well as mean 
precipitation, for each month and a yearly average, across the Mojave.  These layers were taken 
from the PRISM Climate Group (http://www.prism.oregonstate.edu/normals/) and calculated 
over the last 30 years.  The resolution of these layers was 800m, and were aggregated down to 
30m. 
Topographic layers: 

The topographic GIS raster dataset consisted of 11 layers derived from the National Land 
Cover Database (NLCD ;http://www.mrlc.gov/nlcd2011.php) and National Elevation Database 
(NED) on the USGS National Map Viewer (http://viewer.nationalmap.gov/viewer/).  The 
elevation, aspect, surface roughness, surface area, slope, and eastness and northness (the degree 
to which slope faces east and north, respectively) layers were all derived from the NED DEM. 
The land cover and barrenness layers were both extracted from the NLCD.  All landscape raster 
layers were produced at a 30m resolution. Longitude and latitude rasters were also constructed 
over the study area. 
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Soil layers: 
The soils GIS raster dataset consisted of 3 layers that describe bulk density, percent of rocks 

greater than 10 inches, and depth to bedrock. The data were extracted from SSURGO2 database. 
Data gaps in SSURGO2 were filled using STATSGO, downloaded from USDA NRCS Soil Data 
Mart (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx).  All layers were 
transformed to 30m rasters. 

Of this complete set of rasters, three different subsets (of 6, 12, and 24 rasters) were selected 
to be used in inference of the correlation between ecological heterogeneity and partitioning of 
genetic variation in Mojave tortoises. We selected these subsets to reduce the complexity and 
computation time of analyses, and to produce a set of statistically more independent layers. 
Many of the initial 83 raster layers in the full set were highly correlated (Figure A8), and 
including such highly correlated layers in later analyses can both confuse the analysis and make 
any interpretation of their individual effects difficult or impossible.  We selected rasters for 
inclusion to maximize overlap with layers used in previous GIS analyses of tortoises, and to 
minimize pairwise correlation among layers.  The list of rasters included in each subset can be 
found in Figure A9. 
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Appendix 2 
 
Model Specification 

A model of landscape resistance, as discussed above, is essentially a specification of a 
reversible random walk on the landscape. A reversible random walk is specified by two 
quantities: the stationary distribution of each point 𝑥, denoted 𝜋 𝑥 , and the relative jump rates 
between each pair of adjacent locations 𝑥 and 𝑦, denoted 𝑗 𝑥,𝑦 ; these combine to give the total 
rate of movement from 𝑥 to 𝑦 as 𝐺 𝑥,𝑦 = 𝑗 𝑥,𝑦 𝜋 𝑥 . The requirement that the random 
walk to be reversible, i.e. 𝜋 𝑥 𝐺 𝑥,𝑦 = 𝜋 𝑦 𝐺 𝑥,𝑦 , means that relative jump rates must be 
symmetric, i.e. 𝑗 𝑥,𝑦 = 𝑗 𝑦, 𝑥 . 

We then allow these two ingredients to be determined by linear functions of the landscape 
layers: if we have 𝑛 landscape layers whose values at location 𝑥 are 𝐿! 𝑥 , ..., 𝐿! 𝑥 , then we 
suppose that 
 

𝐺 𝑥,𝑦 = 𝛽×
1

1+ 𝑒𝑥𝑝 −𝛾!𝐿! 𝑥 −⋯− 𝛾!𝐿! 𝑥

×
1

1+ 𝑒𝑥𝑝 −𝛿 𝐿! 𝑥 + 𝐿! 𝑦 −⋯− 𝛿 𝐿! 𝑥 + 𝐿! 𝑦
. 

 
The parameters are: 𝛽, an overall scaling factor, and for each 1 ≤ 𝑘 ≤ 𝑛, 𝛾!, that determines 
how the 𝑘th layer affects the stationary distribution, and 𝛿!, that determines how the 𝑘th layer 
affects the relative jump rates. 
 
In practice, then, a model is determined by: 

1 A mask, i.e. a specification of the total potential habitat area available for movement; 
movement rates to locations outside of this are assumed to be zero. 

2 The layers, which provide a numerical value for each location on the landscape; we include 
a "constant" layer (that takes the value 1 everywhere), and normalize remaining layers to 
have mean zero and variance 1. 

3 The parameters 𝛽, 𝛾!, ..., 𝛾!, and 𝛿!, ..., 𝛿!. 

4 A neighborhood size 𝑅 and a local coalescence time 𝑇. 

These are combined to fit the data by computing for each 𝑥 and 𝑦 the mean time until a 
random walk begun at 𝑥 first gets closer than 𝑅 to the location 𝑦, which we denote by ℎ! 𝑥,𝑦 , 
and postulating that the observed sequence divergence between tortoises at locations 𝑥 and 𝑦, 
denoted 𝑑 𝑥,𝑦 , is equal to 𝑇 plus the mean 𝑅-commute time, i.e. 

𝑑 𝑥,𝑦 = 𝑇 + ℎ! 𝑥,𝑦 + ℎ! 𝑦, 𝑥 2+ 𝜀, 
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where 𝜀 is the noise due to demographic stochasticity and sequencing error. 
 

Fitting Procedure 
To fit the model above, we find parameters to minimize the weighted mean squared error 

𝑑 𝑥,𝑦 − 𝑇 − ℎ! 𝑥,𝑦 + ℎ! 𝑦, 𝑥 !.

𝐿 =
!,!

 

 
This requires computing the times ℎ! 𝑥,𝑦 , which can be done as follows. First, we compute 

the movement rates of the random walk and place them in a matrix 𝐺, with rows and columns 
indexed by locations, and whose 𝑥,𝑦 th entry is 𝐺!,! defined above. Fix a location 𝑦 and a 
distance 𝑅, let 𝑁! 𝑦  be the set of locations within distance 𝑅 of location 𝑦. Then the times 
ℎ! 𝑥,𝑦  solve the equations 
 

!

𝐺!,!ℎ! 𝑧,𝑦 = −1𝑓𝑜𝑟𝑥 ∉ 𝑁! 𝑦 , 

 
and boundary conditions 

ℎ! 𝑥,𝑦 = 0𝑖𝑓𝑥 ∈ 𝑁! 𝑦 . 
 
This forms one system of equations for each 𝑦, that we solve numerically using sparse matrix 

solvers in the Matrix package in R (Bates and Maechler 2014). 

Analytically, the solution can be written as follows: for a given 𝑦 and 𝑅 let 𝑦,𝑅
𝐺

 denote the 

matrix obtained by removing the rows and columns of 𝐺 corresponding to 𝑁! 𝑦 . Then, seen as 
a vector indexed by 𝑥, 

𝐺!,! !! −1 ,
ℎ! 𝑥,𝑦 =  

 

where 𝐺
!,! !!

 is the matrix inverce of 𝐺!,!, and −1  denotes the vector whose entries are all 

−1. This can be substituted into the expression for the mean squared error above, and then 
differentiated, to find analytic expressions for the gradient vector and Hessian matrix of 𝐿 with 
respect to 𝑇, 𝛽, each 𝛾, and each 𝛿. With these in hand, we then use a "trust region" optimization 
routine, as coded in the package trust in R [Geyer]. This allows us to find best-fitting choices of 
all parameters except 𝑅; in practice, we then fix 𝑅 at 15km. It would be preferrable to also 
optimize over 𝑅; however, 𝑅 is nearly confounded with 𝑇, in that increasing 𝑅 is very nearly 
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equivalent to adding a constant to ℎ! 𝑥,𝑦 , and so this choice does not significantly affect 
results. 
 
Landscape Resistance Models 

Concretely: for the 𝑖th sampled tortoise, let 𝑛! be the number of other sampled tortoises within 
25km, and let the 𝑖, 𝑗 th weight be 

𝑤!,! =
1
𝑛!𝑛!

𝑖𝑓𝑖 ∧ 𝑗𝑎𝑟𝑒 ∈ 𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛, 

and 𝑤!,! = 0 otherwise. Let the 𝑖, 𝑗 th residual be 
𝑟!,! = 𝑑 𝑥,𝑦 − 𝑇 − ℎ! 𝑥,𝑦 + ℎ! 𝑦, 𝑥 . 

 
Then the weighted median residual is the value 𝑟 such that the sum of the weights of the 
residuals smaller then 𝑟 is equal to the sum of the weights larger than 𝑟: concretely, it satisfies 

𝑤!,!
!,! :!!,!!!

= 𝑤!,!
!,! :!!,!!!

; 

if there is ambiguity in where 𝑟 should fall, then it is specified as the weighted mean of the 
nearest possible samples. 
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Appendix 3 
 
Aggregation of development focus area polygons into “chunks” 

The potential development areas evaluated in this study were derived from the alternative 
shapefiles on the DRECP gateway. Polygons designated as "Development Focus Areas", which 
ranged between 1000-2500 polygons for the different alternatives. The polygons were grouped 
into “chunks” according to area and proximity amongst each other, as described below.  

First, an initial set of development chunks was established by selecting all polygons with an 
area greater than or equal to 1000 hectares. Next, all remaining polygons within 5 km (edge to 
edge proximity) of an initial polygon were identified as secondary polygons and assigned to the 
closest initial polygon. If the secondary polygons were adjacent to multiple initial polygons, the 
secondary polygon took the assignment of the largest initial polygon.  

The remaining polygons (polygons under 1000 hectares that are not within 5 km of an initial 
polygon) were grouped into “remainder clusters,” based on proximity, with a 5 km upper limit. If 
a remainder cluster was smaller than 5 hectares and within 10 km of other such polygon clusters, 
that remainder cluster was reassigned to reflect a single potential development area with the 
closest remainder cluster. In the preferred alternative, the polygons were grouped into 36 
potential development areas, with areas ranging between 4 and 300,000 hectares. All results were 
rasterized to a 1 km resolution (consistent with the habitat model from Nussear et al. (2009)).  
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Appendix 4 
 
Development chunks across all alternatives, ranked by isolation (years) 
Below is a table of the effects of removing each chunk across all alternatives. Keys that show 
the spatial configuration all of the chunks can be found in Figures 10 and A8-A11). The mean 
isolation is a good measure of the total effect of removing a given area, but note that the absolute 
size of the number is not necessarily reflective of the overall effect, as it measures this piece, in 
isolation, without the effects of all other pieces. There are many instances where the impacts of 
multiple chunks considered together have a larger impact than the sum of the chunks by 
themselves.  

• habitat removed is the total amount of area either in possible development areas or 
completely isolated from the rest of tortoise habitat under this alternative, 

• isolated is the total area on which the gene flow to nearby areas has increased, 

• isolation is the mean amount by which the commute time has increased to nearby areas 
across this area where it has increased, 

• max isolation is the maximum amount by which the commute time has increased between 
any two nearby reference locations. 

Chunk	  
name	  

Habitat	  area	  
removed	  
(km2)	  

Habitat	  
removed	  

(%)	  
Isolated	  
(km2)	  

Isolated	  
(%)	  

Isolation	  
(years)	  

Max	  isolation	  
(years)	  

pref-‐31	   55	   0.040%	   3129	   2.270%	   10454.96287	   11002.95027	  
alt1-‐30	   55	   0.040%	   3129	   2.270%	   10454.96287	   11002.95027	  
alt2-‐39	   55	   0.040%	   3129	   2.270%	   10454.96287	   11002.95027	  
alt3-‐36	   55	   0.040%	   3129	   2.270%	   10454.96287	   11002.95027	  
alt4-‐40	   55	   0.040%	   3129	   2.270%	   10454.96287	   11002.95027	  
alt1-‐31	   32	   0.023%	   3129	   2.270%	   2977.230231	   5720.945775	  
alt3-‐37	   32	   0.023%	   3129	   2.270%	   2977.230231	   5720.945775	  
alt4-‐41	   32	   0.023%	   3129	   2.270%	   2977.230231	   5720.945775	  
alt2-‐41	   26	   0.019%	   3129	   2.270%	   2076.042664	   4267.545256	  
alt2-‐42	   4	   0.003%	   3129	   2.270%	   930.5677689	   1028.976902	  
pref-‐32	   6	   0.004%	   3129	   2.270%	   549.4983126	   847.0290059	  
alt2-‐4	   441	   0.320%	   5962	   4.326%	   154.2939496	   1232.719606	  
alt4-‐34	   982	   0.713%	   4406	   3.197%	   126.544891	   890.60505	  
pref-‐25	   987	   0.716%	   4406	   3.197%	   126.4884531	   890.5329366	  
alt2-‐29	   1014	   0.736%	   4406	   3.197%	   125.5936494	   889.4511347	  
alt4-‐15	   464	   0.337%	   41928	   30.422%	   111.1056815	   1866.096075	  
pref-‐7	   481	   0.349%	   41928	   30.422%	   110.8387193	   1865.595161	  
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alt2-‐11	   481	   0.349%	   41928	   30.422%	   110.8387193	   1865.595161	  
alt1-‐26	   229	   0.166%	   16041	   11.639%	   105.030575	   1981.301324	  
alt3-‐32	   232	   0.168%	   16041	   11.639%	   104.9816929	   1981.223443	  
alt2-‐33	   685	   0.497%	   32672	   23.706%	   102.4671119	   1558.291619	  
alt3-‐26	   119	   0.086%	   20171	   14.636%	   96.79866947	   2509.389538	  
alt2-‐17	   561	   0.407%	   78360	   56.856%	   92.70997656	   2420.175936	  
alt2-‐18	   658	   0.477%	   38341	   27.819%	   92.61728592	   2003.122895	  
alt2-‐37	   349	   0.253%	   39807	   28.883%	   83.20759122	   1517.147758	  
alt2-‐13	   125	   0.091%	   83308	   60.447%	   71.09490207	   1043.239349	  
alt2-‐12	   25	   0.018%	   80470	   58.387%	   67.64288972	   970.6218473	  
alt4-‐20	   279	   0.202%	   87719	   63.647%	   67.37425841	   1966.676353	  
pref-‐13	   299	   0.217%	   87719	   63.647%	   65.09388048	   1627.105793	  
alt4-‐23	   440	   0.319%	   34920	   25.337%	   60.32250515	   1758.418059	  
pref-‐16	   441	   0.320%	   34920	   25.337%	   60.30016361	   1758.381114	  
alt1-‐18	   509	   0.369%	   38947	   28.259%	   57.23993726	   1069.079078	  
alt4-‐21	   509	   0.369%	   38947	   28.259%	   57.23993726	   1069.079078	  
pref-‐14	   512	   0.371%	   38947	   28.259%	   57.19660826	   1069.024854	  
alt3-‐19	   512	   0.371%	   38947	   28.259%	   57.19660826	   1069.024854	  
alt3-‐33	   339	   0.246%	   34510	   25.040%	   56.93591435	   1002.734925	  
alt1-‐20	   376	   0.273%	   30698	   22.274%	   54.74882569	   1668.181877	  
pref-‐27	   336	   0.244%	   34510	   25.040%	   51.62989072	   867.7679889	  
pref-‐5	   148	   0.107%	   64315	   46.666%	   51.61584802	   994.4857026	  
alt2-‐9	   148	   0.107%	   64315	   46.666%	   51.61584802	   994.4857026	  
alt2-‐21	   372	   0.270%	   30698	   22.274%	   51.17128564	   1562.243574	  
alt3-‐21	   372	   0.270%	   30698	   22.274%	   51.17128564	   1562.243574	  
alt4-‐13	   146	   0.106%	   64917	   47.102%	   51.0937871	   994.4998639	  
alt3-‐14	   276	   0.200%	   81060	   58.815%	   43.42090795	   1254.543749	  
pref-‐11	   204	   0.148%	   71582	   51.938%	   40.38579457	   1066.374699	  
alt4-‐18	   199	   0.144%	   71582	   51.938%	   39.86367356	   1055.615116	  
alt2-‐34	   144	   0.104%	   129339	   93.846%	   39.54953954	   806.3461141	  
alt3-‐15	   175	   0.127%	   67035	   48.639%	   34.99917168	   912.9427254	  
alt1-‐15	   173	   0.126%	   67035	   48.639%	   34.73083816	   906.799037	  
alt2-‐32	   121	   0.088%	   43126	   31.291%	   29.82379848	   373.7315794	  
alt1-‐13	   212	   0.154%	   79400	   57.611%	   29.07229668	   789.171887	  
alt4-‐12	   129	   0.094%	   54457	   39.513%	   29.07204937	   726.005056	  
pref-‐4	   128	   0.093%	   54457	   39.513%	   29.07196254	   726.005058	  
alt2-‐8	   128	   0.093%	   54457	   39.513%	   29.07196254	   726.005058	  
alt3-‐10	   159	   0.115%	   40442	   29.344%	   26.64999279	   472.1949398	  
alt3-‐22	   129	   0.094%	   29122	   21.130%	   26.19520402	   1038.755225	  
pref-‐29	   95	   0.069%	   39807	   28.883%	   24.63882816	   555.0311281	  
alt2-‐22	   232	   0.168%	   100619	   73.007%	   24.16969985	   423.3725473	  
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alt3-‐34	   129	   0.094%	   40702	   29.533%	   21.49991786	   412.1222172	  
pref-‐28	   128	   0.093%	   40702	   29.533%	   20.95496256	   399.7414774	  
alt4-‐37	   128	   0.093%	   40702	   29.533%	   20.95496256	   399.7414774	  
pref-‐17	   173	   0.126%	   60235	   43.705%	   20.31691442	   277.0804954	  
pref-‐18	   219	   0.159%	   95912	   69.592%	   19.78074043	   371.7395754	  
alt3-‐25	   216	   0.157%	   95912	   69.592%	   19.48284167	   366.1448871	  
alt1-‐22	   195	   0.141%	   97881	   71.020%	   18.42110525	   329.3456871	  
alt4-‐26	   192	   0.139%	   97881	   71.020%	   18.3888473	   327.7363475	  
alt4-‐36	   144	   0.104%	   36063	   26.167%	   17.34544972	   391.5485222	  
alt2-‐31	   83	   0.060%	   42545	   30.870%	   17.25972043	   183.7982339	  
alt2-‐20	   115	   0.083%	   104851	   76.078%	   15.31718378	   255.6196251	  
pref-‐30	   121	   0.088%	   41658	   30.226%	   15.12708329	   298.3699549	  
alt2-‐38	   121	   0.088%	   41658	   30.226%	   15.12708329	   298.3699549	  
alt2-‐14	   160	   0.116%	   83214	   60.378%	   13.92264439	   235.0435836	  
alt2-‐36	   51	   0.037%	   43732	   31.731%	   12.43975845	   161.6208687	  
alt1-‐29	   70	   0.051%	   42267	   30.668%	   12.18142083	   255.2150158	  
alt3-‐35	   43	   0.031%	   44465	   32.263%	   11.75473679	   150.7783055	  
alt1-‐21	   25	   0.018%	   36644	   26.588%	   11.65870977	   557.613118	  
alt1-‐19	   30	   0.022%	   22221	   16.123%	   10.68822929	   311.8983999	  
alt4-‐33	   66	   0.048%	   36063	   26.167%	   10.62698592	   297.4178308	  
pref-‐22	   98	   0.071%	   34762	   25.223%	   10.31592401	   269.6499622	  
alt4-‐30	   92	   0.067%	   34762	   25.223%	   10.06381054	   264.2721669	  
alt1-‐11	   74	   0.054%	   55899	   40.559%	   9.221810567	   246.7060242	  
alt1-‐27	   57	   0.041%	   36063	   26.167%	   8.527680577	   266.3843285	  
pref-‐8	   108	   0.078%	   82666	   59.981%	   8.144658656	   135.688524	  
alt4-‐39	   38	   0.028%	   49685	   36.050%	   7.942928403	   87.2320839	  
alt2-‐26	   65	   0.047%	   33010	   23.951%	   7.627565649	   216.1114425	  
pref-‐15	   23	   0.017%	   21228	   15.403%	   7.547277138	   243.3179688	  
alt2-‐19	   23	   0.017%	   21228	   15.403%	   7.547277138	   243.3179688	  
alt3-‐20	   23	   0.017%	   21228	   15.403%	   7.547277138	   243.3179688	  
alt4-‐22	   23	   0.017%	   21228	   15.403%	   7.547277138	   243.3179688	  
alt3-‐27	   74	   0.054%	   70303	   51.010%	   7.382383857	   156.8901014	  
alt1-‐12	   62	   0.045%	   34974	   25.376%	   7.364909383	   74.60262281	  
alt3-‐11	   63	   0.046%	   34974	   25.376%	   7.364909383	   74.60262281	  
alt4-‐38	   18	   0.013%	   44995	   32.647%	   7.306471287	   107.577588	  
alt2-‐24	   69	   0.050%	   69312	   50.291%	   6.88446757	   145.8093543	  
pref-‐20	   65	   0.047%	   70303	   51.010%	   6.569753728	   144.0881695	  
alt4-‐28	   63	   0.046%	   75593	   54.849%	   6.298322003	   152.3734595	  
alt4-‐24	   64	   0.046%	   54970	   39.885%	   5.711972865	   95.90468116	  
pref-‐3	   35	   0.025%	   31393	   22.778%	   5.65602406	   67.75635896	  
alt2-‐7	   35	   0.025%	   31393	   22.778%	   5.65602406	   67.75635896	  
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alt3-‐8	   35	   0.025%	   31393	   22.778%	   5.65602406	   67.75635896	  
alt3-‐29	   31	   0.022%	   25251	   18.322%	   5.560229973	   151.1221915	  
alt1-‐24	   30	   0.022%	   25975	   18.847%	   5.434577802	   151.1369023	  
alt1-‐28	   52	   0.038%	   36063	   26.167%	   5.133053172	   158.09309	  
alt4-‐11	   18	   0.013%	   34094	   24.738%	   4.396711231	   53.22000634	  
alt1-‐14	   18	   0.013%	   25471	   18.481%	   4.393072327	   178.8457954	  
alt2-‐15	   18	   0.013%	   25471	   18.481%	   4.393072327	   178.8457954	  
alt3-‐13	   18	   0.013%	   25471	   18.481%	   4.393072327	   178.8457954	  
alt4-‐16	   18	   0.013%	   25471	   18.481%	   4.393072327	   178.8457954	  
alt4-‐42	   17	   0.012%	   41108	   29.827%	   4.303040585	   52.73392572	  
pref-‐9	   17	   0.012%	   21228	   15.403%	   4.072480321	   126.1079045	  
alt4-‐19	   30	   0.022%	   49241	   35.728%	   3.944288786	   68.19111865	  
pref-‐10	   23	   0.017%	   35420	   25.700%	   3.78033413	   62.64543408	  
alt1-‐16	   23	   0.017%	   35420	   25.700%	   3.78033413	   62.64543408	  
alt3-‐16	   23	   0.017%	   35420	   25.700%	   3.78033413	   62.64543408	  
alt4-‐17	   23	   0.017%	   35420	   25.700%	   3.78033413	   62.64543408	  
alt2-‐16	   28	   0.020%	   44698	   32.432%	   3.717882741	   65.90024311	  
alt3-‐17	   28	   0.020%	   44698	   32.432%	   3.717882741	   65.90024311	  
pref-‐12	   28	   0.020%	   58859	   42.707%	   3.682896042	   77.54002323	  
alt1-‐32	   14	   0.010%	   40450	   29.350%	   3.508712862	   45.50924548	  
alt3-‐38	   14	   0.010%	   40450	   29.350%	   3.508712862	   45.50924548	  
alt2-‐35	   16	   0.012%	   40450	   29.350%	   3.494510069	   49.41277092	  
alt4-‐25	   31	   0.022%	   69312	   50.291%	   3.281974681	   43.96302757	  
alt2-‐27	   26	   0.019%	   49594	   35.984%	   3.023469654	   35.31076735	  
alt3-‐30	   26	   0.019%	   49594	   35.984%	   3.023469654	   35.31076735	  
alt1-‐23	   26	   0.019%	   96483	   70.006%	   3.005983975	   35.59140754	  
pref-‐21	   26	   0.019%	   95748	   69.473%	   2.998579551	   34.5690408	  
alt1-‐17	   22	   0.016%	   44698	   32.432%	   2.955399174	   55.77312773	  
alt3-‐12	   38	   0.028%	   82666	   59.981%	   2.91868251	   49.60180006	  
alt2-‐25	   25	   0.018%	   96483	   70.006%	   2.912109851	   34.57389117	  
alt3-‐28	   25	   0.018%	   96483	   70.006%	   2.912109851	   34.57389117	  
alt4-‐29	   25	   0.018%	   96483	   70.006%	   2.912109851	   34.57389117	  
alt3-‐24	   42	   0.030%	   16041	   11.639%	   2.851573119	   59.60814145	  
alt4-‐31	   22	   0.016%	   48972	   35.533%	   2.808693614	   32.47754302	  
pref-‐23	   18	   0.013%	   49594	   35.984%	   2.458679846	   28.1307359	  
pref-‐24	   17	   0.012%	   33530	   24.329%	   2.096735046	   75.98429227	  
alt1-‐25	   17	   0.012%	   33530	   24.329%	   2.096735046	   75.98429227	  
alt2-‐28	   17	   0.012%	   33530	   24.329%	   2.096735046	   75.98429227	  
alt3-‐31	   17	   0.012%	   33530	   24.329%	   2.096735046	   75.98429227	  
alt4-‐32	   17	   0.012%	   33530	   24.329%	   2.096735046	   75.98429227	  
alt3-‐9	   21	   0.015%	   43789	   31.772%	   1.916902126	   45.0516296	  
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alt3-‐18	   11	   0.008%	   76444	   55.466%	   0.968735427	   18.69600268	  
alt1-‐35	   2	   0.001%	   44465	   32.263%	   0.631432596	   19.1767269	  
alt2-‐45	   2	   0.001%	   44465	   32.263%	   0.631432596	   19.1767269	  
alt3-‐41	   2	   0.001%	   44465	   32.263%	   0.631432596	   19.1767269	  
alt4-‐44	   2	   0.001%	   44465	   32.263%	   0.631432596	   19.1767269	  
alt2-‐46	   1	   0.001%	   6660	   4.832%	   0.390993037	   5.624057879	  
alt1-‐36	   1	   0.001%	   91981	   66.739%	   0.131381667	   2.42779131	  
alt2-‐48	   1	   0.001%	   100854	   73.178%	   0.103475423	   3.856345285	  
pref-‐35	   1	   0.001%	   100854	   73.178%	   0.103289812	   2.785222272	  
alt1-‐37	   1	   0.001%	   100854	   73.178%	   0.103289812	   2.785222272	  
alt3-‐43	   1	   0.001%	   100854	   73.178%	   0.103289812	   2.785222272	  
alt4-‐45	   1	   0.001%	   100854	   73.178%	   0.103289812	   2.785222272	  
pref-‐34	   1	   0.001%	   91766	   66.583%	   0.090169896	   1.929091762	  
alt2-‐47	   1	   0.001%	   91766	   66.583%	   0.090169896	   1.929091762	  
alt3-‐42	   1	   0.001%	   91766	   66.583%	   0.090169896	   1.929091762	  
alt4-‐46	   1	   0.001%	   91766	   66.583%	   0.090169896	   1.929091762	  
pref-‐2	   120	   0.087%	   35857	   26.017%	   0.017469848	   0.383377854	  
alt2-‐6	   120	   0.087%	   35857	   26.017%	   0.017469848	   0.383377854	  
alt3-‐7	   66	   0.048%	   42948	   31.162%	   0.014768459	   0.383490034	  
alt4-‐10	   41	   0.030%	   47572	   34.517%	   0.013312576	   0.383523046	  
alt2-‐43	   1	   0.001%	   137166	   99.525%	   0.00058591	   0.007541373	  
alt1-‐10	   26	   0.019%	   1402	   1.017%	   0.000268426	   0.004089324	  
pref-‐0	   0	   0.000%	   0	   0.000%	   -‐	   0	  
pref-‐1	   0	   0.000%	   0	   0.000%	   -‐	   0	  
pref-‐6	   31	   0.022%	   0	   0.000%	   -‐	   0	  
pref-‐19	   81	   0.059%	   0	   0.000%	   -‐	   0.076930398	  
pref-‐26	   26	   0.019%	   0	   0.000%	   -‐	   0	  
pref-‐33	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐0	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐1	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐2	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐3	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐4	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐5	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐6	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐7	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐8	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐9	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt1-‐33	   4	   0.003%	   0	   0.000%	   -‐	   0	  
alt1-‐34	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt2-‐0	   0	   0.000%	   0	   0.000%	   -‐	   0	  
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alt2-‐1	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt2-‐2	   18	   0.013%	   0	   0.000%	   -‐	   0	  
alt2-‐3	   31	   0.022%	   0	   0.000%	   -‐	   1.037902843	  
alt2-‐5	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt2-‐10	   31	   0.022%	   0	   0.000%	   -‐	   0	  
alt2-‐23	   82	   0.059%	   0	   0.000%	   -‐	   0.003731843	  
alt2-‐30	   27	   0.020%	   0	   0.000%	   -‐	   0	  
alt2-‐40	   26	   0.019%	   0	   0.000%	   -‐	   0	  
alt2-‐44	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt3-‐0	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt3-‐1	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt3-‐2	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt3-‐3	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt3-‐4	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt3-‐5	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt3-‐6	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt3-‐23	   47	   0.034%	   0	   0.000%	   -‐	   0	  
alt3-‐39	   4	   0.003%	   0	   0.000%	   -‐	   0	  
alt3-‐40	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐0	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐1	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐2	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐3	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐4	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐5	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐6	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐7	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐8	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐9	   0	   0.000%	   0	   0.000%	   -‐	   0	  
alt4-‐14	   31	   0.022%	   0	   0.000%	   -‐	   0	  
alt4-‐27	   80	   0.058%	   0	   0.000%	   -‐	   0.09594425	  
alt4-‐35	   26	   0.019%	   0	   0.000%	   -‐	   0	  
alt4-‐43	   0	   0.000%	   0	   0.000%	   -‐	   0	  
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Supplemental Figures 

 
Figure A 1. Visualization of genetic structure. Dots represent individual tortoises, and they are colored by their scores on 
PC1. Background color corresponds to elevation. 

 
Figure A 2. Visualization of genetic structure. Dots represent individual tortoises, and they are colored by their scores on 
PC2. Background color corresponds to elevation. 
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Figure A 3. Effects of removing the development areas in Alternative 1. 

 
Figure A 4. Effects of removing the development areas in Alternative 2. 
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Figure A 5. Effects of removing the development areas in Alternative 3. 

 
Figure A 6. Effects of removing the development areas in Alternative 4. 
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Figure A 7. List of 83 landscape layers. 

Layer Name Layer Description
Used in previous 

analyses

avg_rough_30 average surface roughness X
agp_250 annual growth potential X
alley_30 alley
annual_precip annual precipitation
aspect_30 direction of slope face X
barren_30 barren land 
bd_ss2_st_30 same as bulk density X
bdrock_ss2_st depth to bedrock X
bike_pat_30 bike path 
dem_30 elevation X
eastness_30 degree to which slope faces east X
grass_herb_30 grassland/herbaceous cover
imperv_30 percent impervious surfaces
lat_gcs_30 latitude
local_ro_30 ocal roads 
lon_gcs_30 longitude
m2_01_precip avg. precip (Jan)
m2_01tmin minimum temp (Jan)
m2_02_precip avg. precip (Feb)
m2_02tmax max temp (Feb)
m2_02tmean mean temp (Feb)
m2_02tmin min temp (Feb)
m2_03_precip avg. precip (Mar)
m2_03tmax max temp (Mar)
m2_03tmean mean temp (Mar)
m2_03tmin min temp (Mar)
m2_04_precip avg. precip (Apr)
m2_04tmax max temp (Apr)
m2_04tmean mean temp (Apr)
m2_04tmin min temp (Apr)
m2_05_precip avg. precip (May)
m2_05tmax max temp (May)
m2_05tmean mean temp (May)
m2_05tmin min temp (May)
m2_06_precip avg. precip (Jun)
m2_06tmax max temp (Jun)
m2_06tmean mean temp (Jun)
m2_06tmin min temp (Jun)
m2_07_precip avg. precip (Jul)
m2_07tmax max temp (Jul)
m2_07tmean mean temp (Jul)
m2_07tmin min temp (Jul)
m2_08_precip avg. precip (Aug)
m2_08tmax max temp (Aug)
m2_08tmean mean temp (Aug)
m2_08tmin min temp (Aug)
m2_09_precip avg. precip (Sept)
m2_09tmax max temp (Sept)
m2_09tmean mean temp (Sept)
m2_09tmin min temp (Sept)
m2_10_precip avg. precip (Oct)
m2_10tmax max temp (Oct)
m2_10tmean mean temp (Oct)
m2_10tmin min temp (Oct)
m2_11_precip avg. precip (Nov)
m2_11tmax max temp (Nov)
m2_11tmean mean temp (Nov)
m2_11tmin min temp (Nov)
m2_12_precip avg. precip (Dec)
m2_12tmax max temp (Dec)
m2_12tmean mean temp (Dec)
m2_12tmin min temp (Dec)
m2_ann_precip avg. annual precip X
m2_anntmax avg. annual max temp
m2_anntmean avg. annual mean temp
m2_anntmin avg. annual min temp
nlcd_30 land cover type
northness_30 degree to which slope faces north X
parking_30 parking lot road 
pedestri_30 pedestrian trails 
pr_ss2_st percent rocks X
primary_30 primary roads 
private_30 private roads 
ramps_30 highway ramps 
road_30 euclidean distance to nearest road
secondar_30 secondary roads 
service_30 service road 
shrub_30 shrub cover
slope_30 inclination of landscape in degrees X
surfarea_30 surface area of a grid cell
tree_30 tree cover
vehicula_30 4WD dirt trail 
win_precip avg. winter precip X
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Figure A 8. Matrix of correlations between spatial data layers. 
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Figure A 9. List of environmental data layers evaluated in 6, 12, and 24-layer models. 

layer name Layer Category Layer Description Previous Use 6 rasters 12 rasters 24 rasters
imperv_30 anthropogenic percent impervious surfaces x x x
road_30 anthropogenic euclidean distance to nearest road x x
agp_250 biotic annual growth potential X x x x
grass_herb_30 biotic grassland/herbaceous cover x
shrub_30 biotic shrub cover x x
m2_08_precip climate avg. precip (Aug) x x
m2_ann_precip climate avg. annual precip X x x x
m2_anntmax climate avg. annual max temp x
m2_anntmean climate avg. annual mean temp x x
m2_anntmin climate avg. annual min temp x
win_precip climate avg. winter precip X x
avg_rough_30 landscape average surface roughness X x x x
aspect_30 landscape direction of slope face X x
barren_30 landscape percent barren land x
dem_30 landscape elevation X x x x
eastness_30 landscape degree to which slope faces east X x
lat_gcs_30 landscape latitude x
lon_gcs_30 landscape longitude x
northness_30 landscape degree to which slope faces north x
slope_30 landscape inclination of landscape in degrees X x
surfarea_30 landscape surface area of a grid cell x
bd_ss2_st_30 soils bulk soil density X x x
bdrock_ss2_st soils depth to bedrock X x x x
pr_ss2_st soils percent rocks X x x

TOTAL 6 12 24
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Figure A 10. Spatial configuration of proposed development chunks in Alternative 1 that we analyzed. 
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Figure A 11. Spatial configuration of proposed development chunks in Alternative 2 that we analyzed. 
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Figure A 12. Spatial configuration of proposed development chunks in Alternative 3 that we analyzed. 
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Figure A 13. Spatial configuration of proposed development chunks in Alternative 4 that we analyzed. 

 


