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Abstract 
 

The Natural History Museum of Los Angeles County initiated their “Biodiversity Science: City 
and Nature” (BioSCAN) project in 2012, as a way to quantify insect biodiversity and how it 
varies across Los Angeles, CA. Within an urban setting, there are many landscape parameters 
that may have an effect on species richness. In this report, we investigate the number of plant 
species surrounding BioSCAN malaise traps, land cover and land use, surface temperature, tree 
canopy cover, annual average precipitation, photosynthetic activity, elevation, and night light 
intensity, and determine how each of these parameters is related to insect biodiversity. We found 
that land use (including open space and medium intensity of development), tree canopy cover, 
impervious surfaces, mean temperature, mean precipitation, normalized difference vegetation 
index (mean and center), elevation, were all significantly correlated with species richness and 
generic richness. One tree canopy cover dataset alone can explain 41.2% of the species richness 
variance (R-squared = 0.412). The metrics with the strongest correlations (NDVI center, percent 
open space, mean precipitation, percent impervious surface, percent tree canopy cover, and mean 
temperature) were combined into a multiple regression model that is able to explain 50.1% of the 
species richness variance. We hope that these landscape metrics can be used to help predict 
biodiversity patterns and be scaled up to urban areas across the country in order to draw broader 
conclusions about biodiversity in cities. 
 
 
Introduction 
 
Traditionally, landmark conservation and ecology studies have examined animal populations in 
pristine environments, but with accelerating habitat disturbances and urbanization around the 
world, it has become increasingly important to also examine how biodiversity is affected by the 
abiotic and biotic components of man-made landscapes. Habitat loss, alteration, and 
fragmentation are all consequences of urbanization that may influence local diversity. Many 
studies have been conducted researching the impacts of urbanization on various taxa, and while 
these impacts vary greatly, the consensus of the majority of research is that urbanization has an 
overall negative impact on the diversity of species including insects, birds, amphibians, and 
mammals. 

 
In some studies, biodiversity is assessed using manual field work. The labor is often expensive as 
well as time-consuming, and can vary in feasibility depending on the target area and subjects 
(Duro 2007). Remote sensing can alleviate many of these difficulties and provide more 
convenient access to larger data sets. Satellite imagery and other types of remote sensing can 
provide spatial data for vast areas of land, and give researchers the ability to remotely confirm 
field observations or assess inconvenient locations. Most satellites can provide recurring images 
that analyzed to detect changes in the environment over time, including parameters that are 
relevant to ecology and biodiversity. However, there is a very large gap in knowledge regarding 
urban biodiversity and its relationship with remote sensing techniques for assessment, especially 
in regards to insects (Du 2014, Muller 2009). The purpose of our research is to bridge this gap by 
assessing the relationship between various environmental factors and the biodiversity data 
provided by the BioSCAN project.  



Methods 
 
We obtained species and genus richness data for the BioSCAN sites from B. Brown, curator of 
the Entomology section at the Natural History Museum. 
 

  
Table 1. Species richness and genera richness data for each of the BioSCAN sites, excluding sites 2 and 32. 

 
We identified landscape factors that might be related to insect biodiversity, and gathered data on 
these metrics using a combination of remote sensing techniques, GIS, and field measurements. 
 
Study Area 
 
The study area consisted of 30 sites in Los Angeles County. We excluded sites 2 and 32 for all of 
our analysis, as BioSCAN species and genera-level richness data were not provided for these 
sites. When analyzing our field data, we also excluded sites 22 and 30, as the raw data from this 
step of our research is still being processed. Finally, as the McPherson land cover dataset only 
included the city of Los Angeles, we excluded sites 17 and 21, which were just outside the city 
boundary. 

 
Field Data 
 
First, we assessed plant diversity surrounding each site, in order to test if plant diversity has a 
positive correlation with insect diversity. Past studies showed that higher plant diversity meant 
more resources for the insects to use (Pardee and Philpott 2014). To measure the plant diversity 
in the BioSCAN sites, we collaborated with Dean Pentcheff and Lisa Gonzales from the Natural 
History Museum to organize site visits to collect data. From April until the end of May, we 
visited two to three sites every Friday and Saturday on average. We first developed a method 
where we measured radii of 2, 5, 10, and 20 meters from the malaise trap found at each site 
(Figure 1). We took pictures of the different plants found at each radii and stored these pictures 
in a central Google Drive folder. We then began to identify the plant species with the help of our 



advisor, Dr. Tom Gillespie. Some plants that were not identified easily were collected from the 
sites and put in an herbarium press, where Dr. Gillespie helped us identify them later. Obstacles 
that disrupted the radii such as fences and pathways were noted. Once the plants were identified, 
each species was accounted for and the number of species was recorded for later analysis. 

 
Figure 1. A layout of a typical observational study at a BioSCAN field site. 

 
Land Cover and Land Use 
 
For datasets on land cover and land use, data was extracted for analysis in 1 hectare square plots 
(100 m x 100 m) centered on each BioSCAN site. This included LARIAC tree canopy cover, 
McPherson land cover derived from Quickbird satellite imagery, and land use from the USGS 
Gap Analysis Program.  These square plots were created as a layer in ArcGIS by drawing 
circular buffer polygons around each site location, each with radii of 50 meters, and then 
applying the “Feature Envelope to Polygon” tool to create square polygons with dimensions of 
approximately 100 m x 100 m.  It should be noted that, using this method, the square buffers 
produced were slightly below one hectare in area; instead, each plot was within about 1 square 
meter of 9980 m2 in total area. 
 
USGS Gap Analysis Program (GAP) 
 
Land use data (resolution of ~30 m) for the region was acquired from the USGS National Gap 
Analysis Program, or GAP (http://gapanalysis.usgs.gov/gaplandcover/data/). “Gap analysis” is a 
method of biodiversity conservation that maps suitable habitat and species richness across a 
region, in order to find ‘gaps’ where species need additional protection and are not covered by 
existing “conservation networks” (Allen, Pearlstine, and Kitchens 2001). While GAP was not 
necessarily created for the assessment of urban biodiversity, we believe that it is worth looking 
into how well the data predicts diversity, because it is both easy to access and covers the entire 
United States; therefore, if successful, our methods can easily be applied to almost any urban 
area in the country. 

 



The highest level of detail provided by GAP is the “Ecological System or Land Use Class” 
attribute, at a spatial resolution of 30 m. The ecological systems were based on NatureServe’s 
Ecological System Classification for “natural and semi-natural vegetated areas” (Comer et al. 
2003; Lowry et al. 2005). Land Use Class refers mainly to developed areas not included in the 
Ecological System Classification. These classes were derived from the National Land Cover 
Dataset (NLCD), which sorts developed areas into four categories. These categories are defined 
by Homer et al. (2004) as follows: (1) “Developed, Open Space” is described as “a mixture of 
some constructed materials, but mostly vegetation in the form of lawn grasses,” where the land 
cover consists of less than 20% impervious surfaces; (2) “Developed, Low Intensity” includes 
areas in which impervious surfaces make up between 20 and 49% of the land cover; (3) 
“Developed, Medium Intensity” includes areas with between 50 and 79% impervious surfaces; 
and (4) “Developed, High Intensity” regions are “areas where people reside or work in high 
numbers… [such as] apartment complexes, row houses, and commercial/industrial,” and are 
from 80 to 100% impervious. 
 
The GAP land cover dataset for California was downloaded as an ESRI raster file, and imported 
to ArcGIS. A portion of the grid covering the total extent of the BioSCAN site locations was 
extracted and then projected using the North America Albers Equal-Area Conic projection. The 
extracted portion of the GAP data was then converted to a vector file using the “Raster to 
Polygon” ArcGIS tool, selecting “ECOLSYS_LU” as the output feature class. The new polygon 
features were then intersected with the shapefile of square buffers, in order to extract the land use 
data for the 100 m x 100 m area surrounding each BioSCAN site. Within each 100 m x 100 m 
site, the area covered by each land use type was calculated. Any other portions of the plot were 
combined into one “Undeveloped/Other” category. Finally, the attribute table was exported and 
the calculated areas were converted into percentages of the total area within each plot. The 
expectation is that, the higher the overall “intensity” of development within a given plot, the 
lower the insect diversity is likely to be. 

   
LARIAC Tree Canopy 
 
The Los Angeles Regional Imagery Acquisition Consortium (LARIAC) produced Tree Canopy 
data (http://egis3.lacounty.gov/dataportal/2010/12/23/tree-canopy-raster-2006-data/) - with 
resolution of 5 feet, or ~1.5 meters - during the development of the L.A. County Solar Map and 
Green Planning Tool (http://solarmap.lacounty.gov). They did this by developing a Digital 
Surface Model (derived from LARIAC lidar data) and Digital Elevation Model (elevation, if 
trees, buildings, and other features were not present), both with resolution of 5 feet, in 
combination with an NDVI layer calculated using 4-inch resolution red and infrared-band 
images. (source: http://egis3.lacounty.gov/dataportal/wp-content/uploads/2010/02/ Poster-
Developing-the-Solar-Model-for-the-LA-County-Solar-Mapping-Portal.pdf).  Tree canopy was 
defined as any portions of the map in which the Surface Height Model - the difference between 
the digital elevation model and the digital surface model - was greater than 8 feet, and the 



normalized difference vegetation index (NDVI) value was greater than 0.1 (to distinguish trees 
from other tall objects, such as buildings) (source: 
http://egis3.lacounty.gov/dataportal/2010/12/23/tree-canopy-raster-2006-data/) 
 
As with the GAP data, the LARIAC tree canopy data was extracted in 1 hectare plots, for each 
BioSCAN site. After determining the area of each plot that was covered by tree canopy, this was 
used to calculate the area as a percentage of the total area of the plot. 
 
McPherson Land Cover 
 
We also acquired land cover data (resolution of ~1 m) for the Los Angeles region, developed by 
McPherson et al. (2010). This data was created using 82 images - captured between 2002 and 
2005 - from the Quickbird satellite; most were taken during the warmer months, when deciduous 
trees are “in leaf” (McPherson et al. 2010).  
 
The McPherson land cover data contains four categories of land cover: “Trees” (which included 
trees and shrubs), “Irrigated Grass” (green grass and ground cover), “Dry Grass/Bare Soil,” and 
“Impervious Surface/Other.” Pixels were classified based on radiance (brightness) rather than 
reflectance, and the data was refined using NDVI-based “masks” that filter out specific 
categories of land cover: vegetation, nonvegetation, and dry/unirrigated vegetation (McPherson 
et al. 2010). Classification of trees/shrubs was human-assisted, to distinguish trees from irrigated 
grass. 
 
The dataset was imported to ArcGIS in order to extract land cover features within the 1 hectare 
plot at each BioSCAN site.  Within each plot (minus two sites that were not covered by the 
dataset, as they were outside the Los Angeles city limits), the area was calculated for each land 
cover type.  Finally, the attribute table was exported, and the area values were used to calculate 
each land cover area as a percent of the total area within the plot. 
 
WorldClim Mean Annual Temperature and Precipitation 
 
To evaluate the effect of precipitation and temperature on urban insect biodiversity, we acquired 
data from Worldclim (http://www.worldclim.org/current) in an ESRI grid format (resolution of 
30 arc-seconds, or ~1 km). This dataset was created by spatially interpolating precipitation and 
temperature values based on data from tens of thousands of weather stations located around the 
world, with a model that included longitude, latitude, and elevation as independent variables 
(Hijmans et al. 2005). Worldclim temperature data was in units of ˚C*10 - a temperature of 
23.1˚C is displayed as 231 - and precipitation is in millimeters (source: 
http://www.worldclim.org/formats).  
 



This data, along with the BioSCAN site locations, was then imported and mapped using ArcGIS. 
The grids were cropped to include the full extent of the BioSCAN sites, using the “Extract by 
Rectangle” ArcGIS tool. Finally, we recorded the mean temperature and precipitation for each 
site using the the pixel values that most closely overlap with each site. 
 
Landsat 8: Temperature 
 
To begin this portion of our analysis, the Landsat 8 satellite data (resolution of  ~30 m) was 
downloaded from the USGS EarthExplorer application. Landsat 8 has collected data every 16 
days since its launch in 2013 (USGS, 2013). The imagery used was captured on August 14, 
2014, during the peak of the dry season. Once this data was accessed, ENVI Classic was used to 
display the data. We used “Band 10”, one of two thermal infrared bands provided by the Landsat 
8 program, as a measure of surface temperature. It has a resolution of 30 meters, and units are 
brightness values for the 10.60 to 11.19 micrometer wavelength range 
(http://landsat.usgs.gov/band_designations _landsat_satellites.php). The BioSCAN site locations 
were then imported as a vector file and overlaid on the map. 
 
Using the pixel grid boxes on ENVI Classic (Figure 2), data was recorded for the pixel 
underlying each site location, as well as the top left, top center, top right, center left, center right, 
bottom left, bottom center, and bottom right pixels surrounding each site. 

 
Figure 2. In ENVI Classic, we can distinguish between the different pixels which each have a unique value. This 

image shows the nine-pixel ‘window’ that we looked at when determining the values of the remote sensing metrics 
for each site; this included Landsat 8 NDVI and Temperature, as well as Suomi NPP Night Light Intensity. 

 
 



Landsat 8: Normalized Difference Vegetation Index (NDVI) 
 
The images obtained from the Landsat 8 satellite (resolution of 30 m) previously used in 
analyzing temperature were also used to calculate the Normalized Difference Vegetation Index 
(NDVI). The images downloaded from USGS EarthExplorer (source: 
http://earthexplorer.usgs.gov/) were taken on August 14th, 2014. Bands 4 and 5 were imported 
into ENVI Classic, and the data was transformed by ENVI Classic into NDVI. The resulting 
image was imported as a vector file and overlaid with the BioSCAN site locations. 
 
The pixel indicator identified the GPS coordinates of each individual site, and the spatial pixel 
editor measured the NDVI value for individual pixels. Values were recorded for the pixel 
containing the malaise trap as well as the surrounding pixels, following the same procedure as 
what was used for the Landsat temperature data. The first variable defined was “NDVI mean”, 
which averaged the NDVI values recorded from each of the nine pixels surrounding the malaise 
trip for each site. The second variable, “NDVI standard deviation” calculated the standard 
deviation from NDVI mean for each site. Finally, the variable “NDVI center” measured the 
value of the center pixel alone, which contains the malaise trap. 
 
Elevation 
 
The data for elevation was recorded using Google Earth. After entering the coordinates for each 
BioSCAN site location, the “elevation profile” tool was selected. This feature produced the exact 
elevation (in feet) at the site which was then converted into meters. 
 
Suomi NPP Night Lights 
 
The Night Light images were obtained from NASA’s Suomi National Polar-Orbiting Partnership 
VIIRS Sensor as Large GeoTIFF composite image of the United States (Source: 
http://earthobservatory.nasa.gov/IOTD/view.php?id=79800) from April 18 - October 23, 2012. 
The Defense Meteorological Satellite Program provided a secondary source of night light 
images, but the resolution of Suomi NPP (~742m) is much greater than DMSP (3km), making 
the DMSP less suitable given the proximity of some BioSCAN sites (Source: 
http://journals.ametsoc.org/doi/pdf/10.1175/BAMS-87-2-191 ). 
 
Images were taken using Visible Infrared Imaging Radiometer Suite (VIIRS) day-night, low 
light band to show ambient light from anthropogenic sources on both land and water. BioSCAN 
site locations were then overlaid on the GeoTIFF image using  ENVI Classic. Values were 
recorded for each pixel surrounding the site location. This included the top left, top center, top 
right, middle left, center, middle right, lower left, lower center, and lower right pixels. The center 
pixel contained the coordinates of the malaise trap. Georectified information included three 
values per pixel, which correlates with the RGB values for each pixel. The RGB values indicate 



the brightness of ambient night light. Because of the relatively coarse spatial resolution (~742 
m), we chose to conduct statistical analysis only on the center pixel brightness values. 
 
Statistical Analysis 
 
All species and landscape metrics were analyzed in SPSS.  We examined all variables for a 
normal distribution and examined correlations with a Pearson-moment correlation coefficient.  
We also examined a relationship of highly correlated landscape metrics and species richness 
using a simple linear regression and multiple regressions.  R-squared values were then calculated 
using a regression to determine the statistical relationship between the variables. The most highly 
correlated landscape metrics were combined using multiple regression analysis. 
 
 

Results 
 

Linear Regression    

Dependent Variable: Species 
Richness  

  

 R R2 Std. Error of Estimate 

NDVI Mean 0.384 0.147 11.8685 

% Developed, Medium 
Intensity 0.419 0.176 11.6708 

NDVI Center 0.426 0.182 11.6278 

Mean Temp 0.516 0.240 11.0090 

% Impervious/Other 0.497 0.247 11.2834 
% Developed, Open Space 0.520 0.270 10.9820 

Elevation (m) 0.583 0.340 10.4411 

Mean Precipitation 0.624 0.389 10.0448 

% Trees (McPherson) 0.642 0.412 9.9700 

Multiple Regression: 
-NDVI Center 
- % Open Space 
- Mean Precipitation 
- % Impervious/Other 
- % Tree Canopy 
- Mean Temperature 0.708 0.501 10.2208 

Table 2. Linear regression results of each variable from SPSS 
 



 
Figure 3. Multiple regression model for species    Figure 4. Percent canopy cover (McPherson) and species 
richness              richness 
 
Using SPSS, we combined several landscape metrics into a linear model, with the goal of 
explaining as much of the variance in biodiversity as possible. The model includes NDVI Center, 
Percent Open Space, Mean Precipitation, Percent Impervious Surfaces, tree canopy cover, and 
mean temperature.  When combined, these metrics have an R-squared value of 0.501, meaning 
that 50.1% of the biodiversity variance can be explained with these variables. 
 
Field Data 
 

 
Plants 

 (0 to 2 m) 
Plants 

 (2 to 5 m) 
Plants  

(0 to 5 m) 
Plants  

(5 to 10 m) 
Plants  

(0 to 10m) 
Plants 

 (10 to 20 m) 
Plants 

 (0 to 20 m) 

Species Richness        

Pearson 
Correlation -0.168 0.055 -0.011 0.157 0.101 0.304 0.193 

Sig. (2-tailed) 0.466 0.814 0.963 0.497 0.662 0.181 0.402 

Genera        

Pearson 
Correlation -0.081 0.086 0.041 0.1 0.086 0.301 0.183 

Sig. (2-tailed) 0.726 0.71 0.859 0.665 0.711 0.184 0.427 
Table 3. Statistical analysis of field data collected from the 30 BioSCAN sites. 

 
The correlations for all radii in relation to species richness changed from negative to positive 
depending on the distance from the malaise trap, although none were statistically significant. For 
plant species richness in the 5 meter circle surrounding the malaise trap, there was a weak 
negative correlation with insect diversity (r=-0.168 for zero to 2 meters, r=-0.011 for 0 to 5 m). 
As we reached 10 meters away from the trap, the correlation began to be more positive 
(r=0.101). It continued to be more positive as we reached 20 meters (r=0.193). The correlations 
in relation to genera richness followed the same pattern as the correlations for species richness, 
except on a smaller scale. 
 



GAP Land Use 
 
The correlation results on the GAP land use dataset were mixed. As predicted, sites with higher 
overall “intensity” of development tended to have lower biodiversity levels. For example, when 
tested against our species richness data, the proportion of “Developed, Open Space” area 
appeared to have a strong positive correlation with insect species richness (r=0.520, p<0.01). The 
“Developed, Medium Intensity” category stood out as well, having a relatively strong negative 
correlation (r=-0.419, p<0.05). While the “Low Intensity” category had a weaker correlation 
(r=0.204), it could still be interpreted as supportive of the same trend. Just as interesting were the 
two extreme cases - “Developed, High Intensity” and “Undeveloped/Other” - both of which are 
almost completely uncorrelated with the biodiversity metrics.  
 

 
% Developed, 
High Intensity 

% Medium 
Intensity 

% Low 
Intensity % Open Space 

% Undeveloped/ 
Other 

Species Richness      

Pearson Correlation -0.022 -0.419 0.204 0.520 0.052 

Sig. (2-tailed) 0.908 0.021 0.281 0.003 0.784 

Genera      

Pearson Correlation -0.085 -0.383 0.155 0.567 0.088 

Sig. (2-tailed) 0.655 0.037 0.415 0.001 0.644 
Table 4. Statistical analysis of land use from the 30 BioCAN sites. 

 
Given the somewhat coarse spatial resolution of the GAP data, the range in values for each land 
use metric was quite large. In the most extreme case, “Developed, Medium Intensity” ranged 
from 0% all the way to 100% (as a fraction of the standard 1 hectare plot surrounding each site). 
The mean was 52.0%, and the standard deviation was 39.6% The distribution of the “Developed, 
Open Space” variable was not quite as severe, being from 0% to 61.7%. The mean was 11.2%, 
and the standard deviation was 19.5%.  
 
LARIAC Tree Canopy 
 
The percent tree canopy calculated from the LARIAC dataset was not significantly correlated 
with either species richness (r=0.312, p=0.093) or genera (r=0.337, p=0.069).  
 
 
 
 
 
 
 



 % Tree Canopy 

Species Richness  

Pearson Correlation 0.312 
Sig. (2-tailed) 0.093 

Genera  

Pearson Correlation 0.337 
Sig. (2-tailed) 0.069 

Table 5. Statistical analysis of tree canopy cover from the 30 BioSCAN sites. 
 
The tree canopy estimates (as a percentage of the 1 hectare region surrounding each site) varied 
significantly, ranging from ~6.23% (622 m2 of tree canopy) to 57.6% (5747 m2). The mean was 
22.8%, and the standard deviation was 13.3%.   
 
McPherson Land Cover 
 
 % Impervious/Other % Trees % Irrigated Grass % Dry Grass and Bare Soil 

Species Richness     

Pearson Correlation -0.497 0.642 - 0.335 0.279 
Sig. (2-tailed) 0.007 <0.001 0.081 0.151 

Genera     

Pearson Correlation -.501 .607 -0.228 0.204 
Sig. (2-tailed) 0.007 0.001 0.244 0.297 

Table 6. Statistical analysis of land cover from the 30 BioSCAN sites. 
 
The mean value for the “Impervious/Other” classification was 49.0%, with a minimum of 4.26%, 
maximum of 83.6%, and a standard deviation of 22.4%. This variable was strongly correlated 
with species richness, with a significance of 0.007 (r=-0.497, p<0.01; R-squared=0.247). The 
correlation of “Impervious/Other” and genera was even stronger, and once again had a 
significance of 0.007 (r=-0.501, p<0.01). This statistically significant negative correlation 
suggests that as the proportion of “Impervious/Other”-type land cover increases, species richness 
and genera decreases. 
 
The mean for tree canopy cover was 31.8%, with a minimum of 7.61%, maximum of 89.3%, and 
a standard deviation of 21.1%. Of all the variables we tested, tree canopy cover was most 
strongly correlated with species richness (r=0.642, p<0.01; R-squared 0.412) as well as genera 
(r=0.607, p<0.01). This statistically significant positive correlation indicates that as tree canopy 
cover area increases as a proportion of total area, insect species richness and genera increase as 
well. 
 



Interestingly, the “Irrigated Grass” variable was negatively correlated with species richness and 
genera, though the results were not statistically significant. In addition, the results for “Dry Grass 
or Bare Soil” were actually positively correlated with species richness and genera, but not to a 
significant degree. 
 
WorldClim Mean Annual Temperature and Precipitation 
 
 Mean Temp Mean Precipitation 

Species Richness   

Pearson Correlation -0.516 0.624 

Sig. (2-tailed) 0.004 0.001 

Genera   

Pearson Correlation -0.472 0.584 

Sig. (2-tailed) 0.009 0.001 
Table 7. Statistical analysis of mean annual temperature and precipitation from the 30 BioSCAN sites. 

 
The mean, across all the BioSCAN sites, for the annual temperature data was 13.52 ˚C, with 
standard deviation of 0.539˚C, and a range of 12.6 to 14.2 ˚C. There was a significant negative 
correlation between mean temperature and species richness (r=-0.516, p<0.01; R-
squared=0.240), as well as mean temperature and genera (r=-0.472, p<0.01), indicating that an 
area with higher mean temperature would yield less diversity in genera and species richness. 
 
The mean for the annual precipitation data was 87.5 mm, the standard deviation was 7.82 mm, 
and the range was 73 to 104 mm. The R2 value for mean precipitation is 0.389. There are 
significant positive correlations between mean precipitation and species richness (r=0.624, 
p<0.01; R-squared=0.389), and mean precipitation and genera (r=0.584, p<0.01). This indicates 
that an area with higher mean precipitation is likely to have greater insect biodiversity, at both 
the genera and species level. The high Pearson correlation values between mean precipitation 
and species richness and genera show that mean precipitation is a crucial factor in the overall 
variance in urban insect biodiversity. 
 
 
 
 
 
 
 
 
 
 



Landsat 8: Temperature 
 
 Temperature (Mean of the 9 pixels) Stand. Dev. Temperature (Center pixel) 

Species Richness    

Pearson Correlation -0.32 0.123 -0.323 
Sig. (2-tailed) 0.085 0.518 0.082 

Genera    

Pearson Correlation -0.351 0.163 -0.351 
Sig. (2-tailed) 0.058 0.391 0.057 

Table 8. Statistical analysis of temperature from the 30 BioSCAN sites. 
 
The brightness for the “center” pixels had an average value of 135.5, with standard deviation of 
3.54, and a range from 107 to 183. The center pixel values were not significantly correlated with 
species richness (r=-0.323, p=0.082), or genera (r=-0.351, p=0.058). This was similar for mean 
brightness for the nine-pixel window, in that the correlation was not quite significant for either 
species richness (r=-0.32, p=0.085) or genera (r=-0.351, p=0.058).  
The standard deviation of values in each nine-pixel window had an even weaker correlation with 
species richness (r=0.123, p=0.518) and genera (r=0.163, p=0.391), suggesting that insect 
diversity is not dependent on local variation in surface temperatures. 
 
Landsat 8: NDVI 
 
 NDVI Mean NDVI Stand. Dev. NDVI Center 

Species Richness    

Pearson Correlation .384 0.248 0.426 

Sig. (2-tailed) 0.036 0.186 0.019 

Genera    

Pearson Correlation .373 0.295 0.385 

Sig. (2-tailed) 0.042 0.114 0.036 
Table 9. Statistical analysis of NDVI from the 30 BioSCAN sites. 

 
The average value and standard deviation of the NDVI mean (nine-pixel window) variable was 
0.226 and 0.123 respectively. The highest value was 0.471, and the lowest value was 0.054. The 
mean and standard deviation were also calculated for the NDVI standard deviation variable, and 
were 0.072 and 0.028 respectively. The highest value of this variable was 0.132, and the lowest 
was 0.023. Finally, the mean and standard deviation were calculated for the NDVI center 
variable, and were 0.238 and 0.124 respectively. The highest value was 0.521, and the lowest 
value was 0.101. 

 



Species richness and NDVI mean were positively correlated (r=0.384; p<0.05), and species 
richness and NDVI center were also positively correlated (r=0.426; p<0.05). However, species 
richness was not correlated with NDVI standard deviation. Genera and NDVI mean was 
positively correlated (r=0.373; p<0.05), as well as genera and NDVI center (r=0.385; p<0.05). 
Again, there was no correlation between genera and NDVI standard deviation. The R-squared 
value of species richness and NDVI mean center was 0.147, and 0.182 for species richness and 
NDVI center. 

 
Elevation 
 
The mean for the elevation data from Google Earth was 158.3 meters, the standard deviation was 
146.3 meters, and the range was 9.144 to 261.823 meters. The Pearson correlation between 
species richness and elevation was 0.34. The r value for genera richness and elevation was 0.321. 
 
Night Light Intensity 
 
 

 Center R Center G Center B 
St. Dev. 

(Intensity) 
Mean 

(Intensity) 
Center 

(Intensity) 

Species Richness       

Pearson Correlation 0.084 0.007 -0.078 -0.051 0.1 0.083 

Sig. (2-tailed) 0.659 0.971 0.68 0.789 0.598 0.662 

Genera       

Pearson Correlation 0.112 0.055 -0.044 -0.082 0.14 0.111 
Sig. (2-tailed) 0.556 0.771 0.816 0.666 0.461 0.558 

Table 10. Statistical analysis of night light intensity from the 30 BioSCAN sites. 
 
The mean Red/Green/Blue values were calculated for the center pixels for all sites. The mean 
values were [255, 249, 211]. The standard deviations between RGB values in the center pixels 
are [0.751, 7.779, 24.006]. The highest values (of all sites cumulatively) were [255, 254, 249], 
and the lowest values were [251, 214, 139]. Species richness and night light RGB “color” were 
marginally positively correlated (r=0.084, p=0.659) for the red band, marginally positively 
correlated (r=0.007, p=0.971) for the green band, and marginally negatively correlated (r=-0.078, 
p=0.68) for the blue band. Genera and night light RGB values were slightly positively correlated 
(r=0.112, p=0.556) for the red band, marginally positively correlated (r=0.005, p=0.771) for the 
green band, and marginally negatively correlated (r=-0.044, p=0.816) for the blue band. None of 
the calculated r or p-values were statistically significant, though this might be a result of the 
RGB values losing significance as standalone values, which is a limitation to this data set.  
 
 



Discussion 
 
Field Data 
 
The correlations for our field data were surprisingly lower and weaker than expected, as we 
expected high plant diversity to be correlated with high insect diversity according to past 
literature (Bates et al. 2014; Pardee and Philpott 2014). However, since thirty sites were a 
relatively small sample scattered over a large area, the weaker correlations might not have been 
that surprising. Our measurements of the plant diversity of each site have been rough estimates, 
so a more precise method of measuring plant diversity besides identifying plants based on 
pictures would be more helpful and can be done in the future. 
 
During our research, we counted the number of different plant species seen instead of identifying 
each plant as native or non-native, as we did not have the proper resources nor the knowledge to 
identify all plants that were observed. If we had more access to current technology, such as 
iNaturalist (http://www.inaturalist.org/), we would have been able to identify each plant species 
relatively quickly.  This method of measuring plant diversity could be something to consider for 
future research. 
 
GAP Land Use 
 
In the GAP Land Use data, the low correlations of  “Developed, High Intensity” and 
“Undeveloped/Other” with the biodiversity metrics make it difficult to reject the null hypothesis 
(that intensity of development and insect diversity are unrelated) outright. While additional 
research is still needed, it may simply be that biodiversity in the most highly developed urban 
areas - insect diversity, at least - is not as severely impacted as one might expect. Alternatively, it 
could be a limitation of the GAP classification system - or, more specifically, the National Land 
Cover Data that the “Land Use” classes were based on - which groups a potentially very broad 
range of land uses together into somewhat vague categories. For this type of research, it may be 
simpler - and provide more meaningful and consistent results - if the data that these classification 
schemes are based on (NDVI, proportion of impervious surfaces, etc.) is focused on instead. 
 
Since the Gap Analysis Program covers the entire contiguous United States, as well as Alaska, 
Hawaii, and Puerto Rico (source: http://gapanalysis.usgs.gov/gaplandcover/data/), we hoped that 
this data could become a valuable resource for future research on urban biodiversity anywhere in 
the country. However, for now we recommend that more work be done to determine why some 
levels of development have the expected correlation with diversity, while others do not. 
 
 
 
 



LARIAC Tree Canopy 
 
While the LARIAC tree canopy data is not highly correlated with species richness or genera by 
the standard significance values (p<0.05 or p<0.01), it is certainly not completely uncorrelated. It 
is hard to say at this point why the Quickbird (McPherson) tree canopy is so much more highly 
correlated; while this still needs to be investigated, it is most likely due to the differences in 
resolution of the two datasets, different methods used for distinguishing tree canopy from other 
features, and/or the different times (possibly capturing seasonal differences) that the two tree 
canopy layers (or the satellite and lidar data they were derived from) were created. 
 
McPherson Land Cover 

 
The weak negative correlation between “Irrigated Grass” and species richness and genera may be 
attributed to the overall uniformity of a bed of grass, inhibiting a diversity of habitats for various 
insects. The weak positive correlation between “Dry Grass or Bare Soil” and species richness 
and genera may be due to the limitation of the 1 meter resolution, as areas classified as “Bare 
Soil” may actually contain small sprouts, growths, and sporadic flowering plants, which may 
provide habitat types for various insects. “Dry Grass” could also include decaying grass, which 
may also attract additional species of insects.  
 
The strong positive correlation between tree canopy and species richness and genera as well as 
the strong negative correlation of “%Impervious/ Other” and species richness and genera 
indicates that these two factors are decisive predictors of urban insect biodiversity.   
 
WorldClim Mean Temperature and Precipitation 
 
There was a strong positive correlation between mean precipitation and species richness and 
genera, indicating that precipitation was an important factor in determining insect biodiversity in 
an urban area. This correlation can be explained by the effects precipitation on vegetation growth 
and plant diversity. The more humid an area is, the more plant growth there will be, resulting in 
an increase of plant diversity. Thus, precipitation affects urban insect biodiversity through the 
growth and development of plant species.   
 
The strong negative correlation between mean temperature and species richness and genera can 
also be explained by the effect temperature has on vegetation growth and plant diversity. The 
hotter an area is, the less plant growth there will be, which results in the decrease of plant 
diversity. Temperature is a significant factor in limiting insect species richness and genera of an 
urban area. 
 
 
 



Landsat Temperature 
 
There was a fairly weak negative correlation between Landsat 8 (band 10) temperature data and 
species richness, as well as Landsat 8 (band 10) temperature data and genera. The Landsat 8 
temperature data gave measurements of brightness, not actual temperature. The difference in 
statistical significance between this set of data and the data from WorldClim could be due to the 
difference in units used to measure temperature.  
 
NDVI 
 
NDVI measures chlorophyll content and subsequently plant productivity and vegetation density ( 
http://phenology.cr.usgs.gov/ndvi_foundation.php). The data analyzed indicates that this is 
correlated with species richness. Of the three NDVI variables analyzed (NDVI mean, NDVI 
standard deviation, and NDVI center), NDVI mean and NDVI center were both positively 
correlated with species richness. NDVI center showed the strongest correlation between the three 
variables. This indicates that the plant productivity within 30m x 30m of the malaise trap, the 
size of one pixel, was more strongly correlated with species richness than the mean plant 
productivity of the immediate surrounding area of approximately 90m x 90m. The high 
significance associated with the positive correlation and R-squared value of NDVI center 
indicates the importance of this metric in the multiple regression model. While NDVI mean was 
also shown to be correlated, the R-squared value and significance were relatively lower than 
NDVI center, but was still included in the multiple regression. 

 
Elevation 
 
There was a positive correlation between elevation (meters) and species richness, as well as 
elevation (meters) and genera. Additionally, the data for elevation and climate were significantly 
related, as well as elevation and tree canopy cover. These results were expected because as 
elevation increases, so does precipitation, which in turn increase vegetation cover.  
 
Night Light Intensity 
 
There was no statistically significant correlation between night light intensity (measured as three 
separate RGB values) and either species richness or genera. Because night lights are saturated in 
the Los Angeles metropolitan area, the VIIRS sensor was not able to differentiate between sites 
at a high enough resolution to be of any use. Another limitation may be that the separate RGB 
values (ex: [254, 250, 140]) had no intrinsic value as three comma separate values. Our statistical 
analysis treated each band as a separate value (i.e. r-value was calculated for red, green, and blue 
separately), and this methodology yielded no significant results. Potential future studies in night 
lights could investigate different methods of quantifying the intensity of light, but the Suomi 
NPP VIIRS sensor’s images provide georectified data only in this format. Even more so, the 



biological mechanism which drives insects’ reactions to artificial lights in cities (ex: disrupting 
circadian rhythms) is still relatively unknown, and this metric will be interesting to investigate as 
the field of urban ecology becomes more understood. 
 
Mapping L.A. Biodiversity 
 
As a preview of the type of product that might be designed from this type of analysis, we’ve 
created a map of insect diversity for the entire city of Los Angeles (Figure 6). This map is based 
on a linear regression of species richness with McPherson tree canopy (in one-hectare plots 
centered on each BioSCAN site) as the independent variable, as this version of tree canopy had 
the highest R-squared value of any single metric we analyzed. A multiple regression model, such 
as the one we made - using NDVI, tree canopy, open space, impervious surfaces, temperature, 
and precipitation as explanatory variables - could be applied in a similar manner, but with 
potentially more accurate biodiversity predictions. 

 
Figure 5. A regression of percent canopy         Figure 6. A map of Los Angeles showing        
cover (McPherson)and species richness.          species per hectare, derived from data shown   
The difference from Figure 4 is due to the        in Figure 5. 
difference in extraction methods for obtaining 
the McPherson data set. 
 
 
 
 
 



Conclusion 
 
The NHM BioSCAN program is one of the first of its kind - research and concrete data on 
biodiversity in urban environments is very scarce. As a result, the program is engaging in 
cutting-edge science with no set methodology as to how to collect and assess urban biodiversity 
metrics. Part of the goal of this paper was to test and develop ideal practices in analyzing the 
diversity and abundance data that BioSCAN has accumulated since 2012. For example, we 
looked at which distances from the malaise trap yield the most correlated results; this may assist 
future studies in determining what level of spatial resolution to prioritize when identifying and 
analyzing other parameters that might influence biodiversity. Techniques such as this, which can 
apply to both fieldwork and remote sensing techniques, will be applicable even as landscapes 
change over time. We also identified methods and metrics that were not effective (e.g. night 
lights as an RGB metric did not yield any interesting results), and some metrics that would be 
interesting to test in the future, but were not within the scope of our study (native vs. non-native 
plants, proximity to parks/wilderness, etc.).  
 
Some limitations to our study included the extent of available data. For one, the BioSCAN 
program only has complete species and genera richness datasets for the phorid fly family, thus 
we only considered phorid fly diversity in our analysis. As a result, our models and conclusions 
are not applicable to other insects, and we suspect that urban diversity and abundances will vary 
widely in other families. The use of malaise traps presented another physical limitation to the 
study because they preferentially catch flying insects, and ground-dwelling species are generally 
excluded. We expect that total species diversity of ground-dwelling insects will greatly differ 
from flying insects because of their different dispersal mechanisms. Third, the placement of the 
traps within yards widely varied relative to barriers (proximity to buildings, fences, etc.) and 
other environmental features, which were difficult to account for in our analysis. 
Finally, some remote sensing images were not taken in recent years (e.g. Suomi NPP nightlights 
data was from 2012), therefore remote sensing data may not reflect current conditions that we 
noted in other metrics or in our fieldwork data. For instance, landscaping around homes - and 
around malaise traps - can change dramatically and quickly over time. These changes could have 
a real impact on the diversity of insects collected by the BioSCAN project, but they would not be 
captured in remote sensing images.  
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