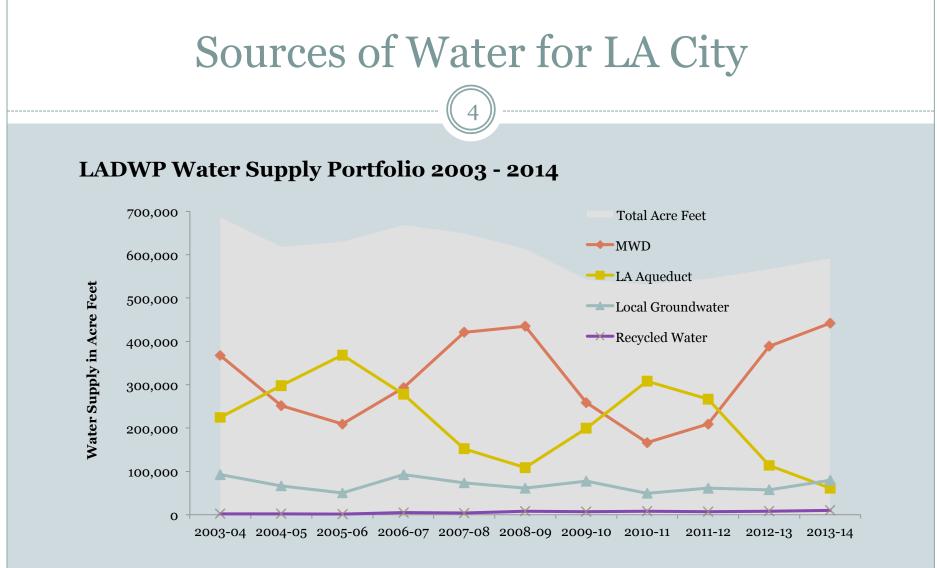
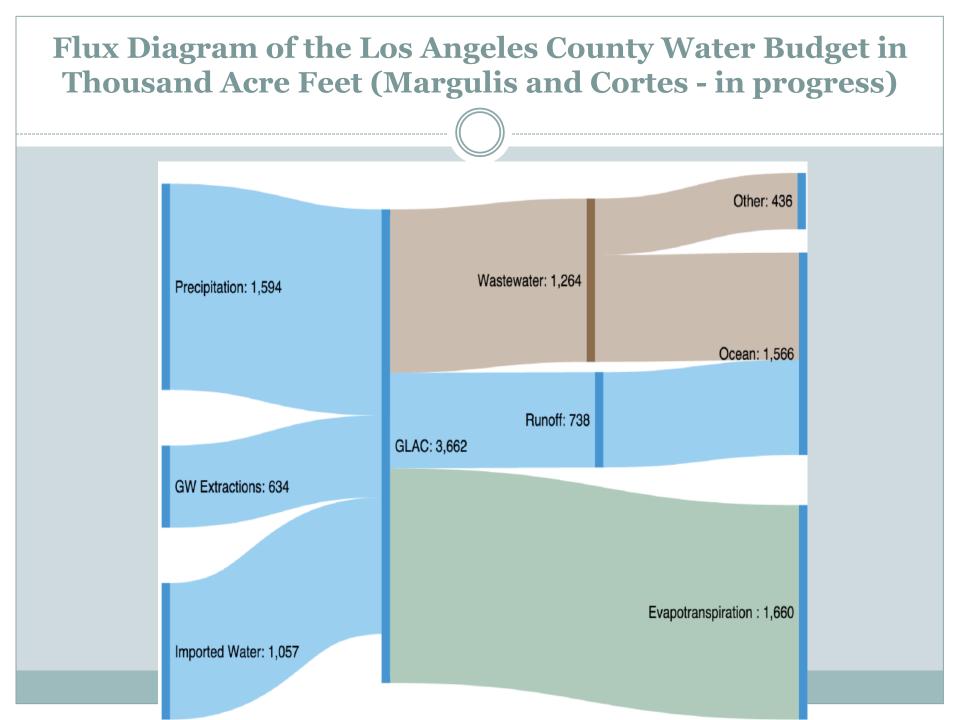


GOAL: 100% renewable energy, 100% locally sourced water, & enhanced ecosystem health by 2050


Water Research Objectives

- Objective 1: Maximize Local Water Supplies
- Objective 2: Reduce Water Consumption
- Objective 3: Improve Local Water Resource Management


Water Research Objectives

- Objective 1: Maximize Local Water Supplies
 - Quantify and characterize existing water supplies
 - Expand available water supplies
 - Encourage adoption of local water sources
 - Enhance water supply resilience and sustainability
- Objective 2: Reduce Water Consumption
- Objective 3: Improve Local Water Resource Management
 - Improve water management infrastructure and technology
 - Improve water governance and policy

Fiscal Year

Data source: https://data.lacity.org/A-Livable-and-Sustainable-City/LADWP-Water-Supply-in-Acre-Feet/qyvz-diiw

Approaching a Sustainable Los Angeles

6

TRANSFORMING LOS ANGELES

ENVIRONMENT I ECONOMY I EQUITY

We lead the nation in water conservation and source the majority of our water locally.

2025

We will fund and begin the San Fernando Groundwater Basin clean-up and reduce per capita potable water use by 20%

We will reduce the purchase of imported water by 50%

We will source 50% of water locally

Approaching Sustainable Water in Los Angeles

Sustainable LA

Ballona Creek Watershed - Stormwater

Water Quality Standards

- Capturing runoff from sig. portion of drainage area & putting thru BMPs approaches compliance
- Potential Local Water Supply
 - Est. recharge in our scenarios 20,000 to 60,000 afy
 - Fewer or different BMPs = less recharge potential
 - * How much becomes water supply?

Stormwater Modelling – Ballona Creek Approach

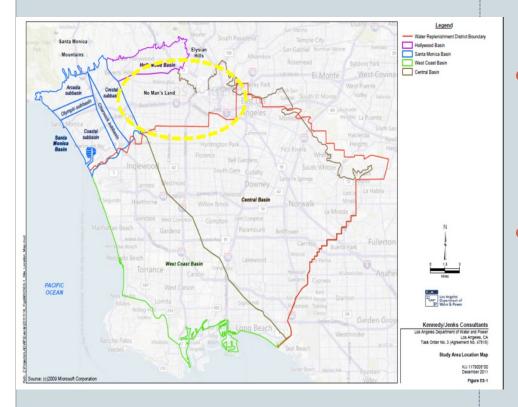
• SUSTAIN

• Selected BMP types

- Regional (infiltration trenches & dry ponds)
- o Distributed (vegetated swales, bioretention basins, porous pavement)
- Focus on BMP volume required & cost, not on specific locations to install BMPs

Modelling regulatory / policy impacts

- Meeting water quality-based effluent limits
- Capturing 85th percentile storm (3/4" proxy) across watershed
 - × Urban land cover (85%) => regional BMPs (infiltration trenches)
 - × Urban land cover (85%)=> regional BMPs (dry ponds)
 - × Private land (77%) => distributed LID BMPs
 - Public land (23%) => distributed LID BMPs


Ballona Creek Compliance Assessment

10

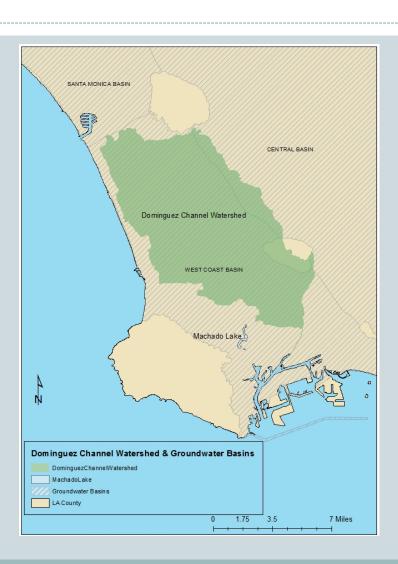
- No dry weather Cu exceedances for all modeled scenarios except Public Property Runoff to LID
- Similar reduction in Cu wet weather exceedances (10 or 11 down from 105) for BMP optimization, Urban Runoff Infiltrated, and Private Property Runoff to LID
- Best reduction in Cu wet weather exceedances for Urban Runoff Treat and Release (down to 6 wet weather exceedances)
- Highest potential recharge (66,000 AFY) was in Urban Runoff Infiltrated followed by Private Property to LID (55,000 AFY). Lowest was 20,000 AFY.
- Cost range: \$500 million to \$1.5 billion
- Post- modelling: Copper Water Effects Ratios (WERs)
 - Cu WER >2 sufficient to remove all Cu TMDL exceedances in baseline scenario

Ballona Creek Watershed- Groundwater

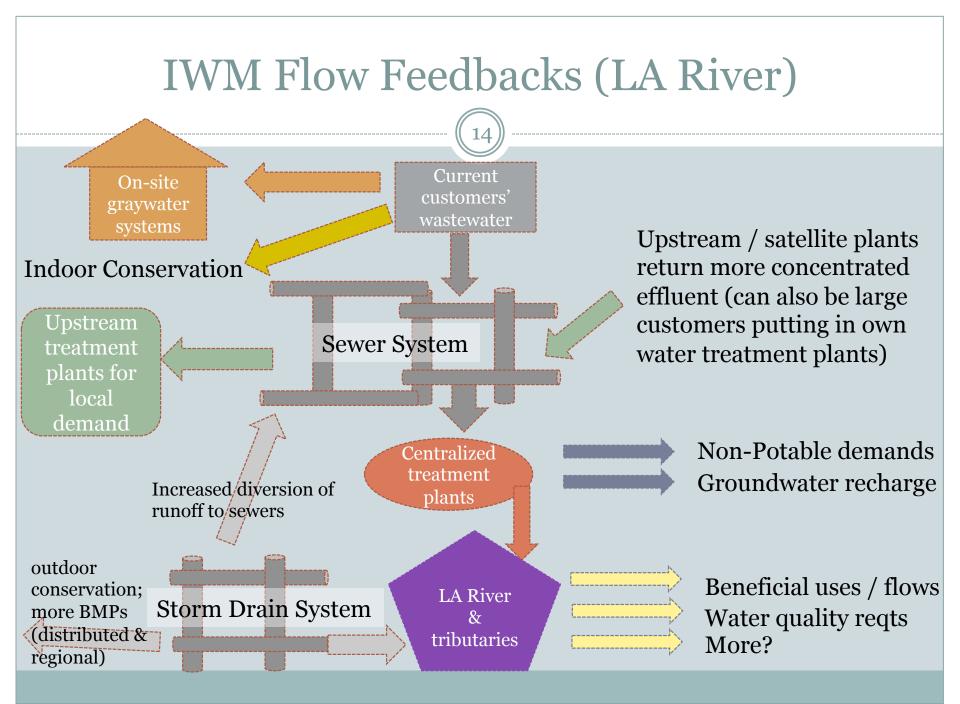
11

- West Coast and Central Basins
- Additional storage space in amended adjudication
 - WCB: 120,000 acre-feet
 - o CB: 330,000 acre-feet

Unadjudicated


- Santa Monica & Hollywood gw basins
- o No Man's land
- Golf courses, others pumping groundwater for irrigation

Ballona Creek Watershed - Recycled Water


MFRO – 2013-2014 flow: 279 MGD, 97% constituents end up in brine, 71% recovery (89% MF, 80% RO) => max production of recycled water @ HTP is 198 MGD.

	NPDES limits	CA Ocean Plan (84 d.f.)	Eff. Conc @ max AWT	Ocean Conc 84x
Ammonia as N (mg/L)	44. 1 (PG)	0.6	162	<mark>1.9</mark>
TSS (mg / L)	30 (EL)		<mark>65</mark>	0.8
Turbidity (NTU)	75 (EL)		28	0.3
Си (µg / L)	25 (PG)	3	36	0.4
Zn (μg / L)	31 (PG)	20	70	0.8
Pb (μg / L)	10 (PG)	2	0.5	0.01
Ni (μg / L)	3 (PG)	5	16	0.2

Dominguez Channel & Machado Lake Watersheds

- WQS Compliance analysis for DC & ML
- Brackish plume in WCB ~600,000 AF as opportunity
- Terminal Island WRP has plentiful local NPR demand

Los Angeles River Watershed

15

- Integrated
- Beneficial use conflicts / Minimum flow requirements
- In-Channel BMPs
- Water supply benefits for infiltrated stormwater and recycled water
- Costs and Benefits
 - o Capital
 - O&M
 - Life cycle
 - Ancillary flood control, open space, recreation, property values, social
- Energy use / GHG emissions
 - Life cycle

