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2)
3)
4)

Outline of this talk

Reconstructing historical land cover and climate change effects
on hydrology

Future projections

Stream temperature

What are the lessons for the LA area, and stormwater recapture
in particular?



What are the “grand challenges” in
hydrology?

* From Science (2006) 125" Anniversary issue (of eight in
Environmental Sciences): Hydrologic forecasting —
floods, droughts, and contamination

 From the CUAHSI Science and Implementation Plan (2007):
... @ more comprehensive and ... systematic
understanding of continental water dynamics ...

 From the USGCRP Water Cycle Study Group, 2001
(Hornberger Report): [understanding] the causes of
water cycle variations on global and regional scales,
to what extent [they] are predictable, [and] how ...
water and nutrient cycles [are] linked?



Important problems all, but I will argue instead (in
addition) that understanding hydrologic sensitivities
to global change should rise to the level of a grand
challenge to the community.



Understanding hydrologic change: The
Puget Sound basin as a case study
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Topography of the Puget Sound basin
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The role of changing land cover — 1880 v. 2002

49.511.. | IR | IR | IR | IR

W Light-medium Utban
I Grass/crop/shrub
Mixed Deciduous Forest

49.0 Coniferous Forest :
Snow/rock
Water
48.5 A 1
48.0 A 1
47.5 A -
47.0 A 1
45 +—ron-moyrrovrro'o- ki i ior-—r—r—pn
-124. -1235 -1230 -1225 -1220 -121.5 -121.0

1880

-120.5

49.5l,,;l PR | | IR SR (N S S S N S S |

Dense Urban (>75%)
W Light-medium Utban
W Bare Ground
I Dry Ground
I Native Grass
I Grass/crop/shrub
P Mixed Deciduous Forest
Coniferous Forest
B Regrowth Vegetation
Clear cuts
Snow/rock

Wetland
Shoreline
W ater

48.0

49.0

48.5 -

47.5

47.0

R T

-124. -123.5 -1230 -1225 -1220 -121.5 -121.0

2002

-120.5



The role of changing climate, 1950-2000
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Understanding hydrologic change: The
modeling context

Fundamental premises

a) Simulation modeling must play a central role,
because we rarely have enough observations to
diagnose change on the basis of observations alone
(and in the future, the “experiment” hasn't yet been
performed)

b) If the hydrological processes are changing, we need
to represent those processes

c) Hence, prediction approaches that are “trained” to
observations won't work well



The Distributed Hydrology-Soil-
Vegetation Model (DHSVM)
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Surface - Subsurface Flow Routing and Runoff Generation
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DHSVM Snow Accumulation and Melt Model
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Representing urbanization effects in DHSVM

Hydrologically relevant features of urbanization
not found in “natural” watersheds:

1) surface components such as streets, rooftops, ditches

2) subsurface components such as pipes and other
manmade stormwater drainage conduits

3) In fully urbanized catchments, these elements are
linked through street curb inlets and manholes

4) In partially urbanized catchments, these urban
drainage elements are often mixed with the natural

channel drainage system



Modifications of DHSVM for urban areas

For pixels with land cover category “urban”, a fraction of
impervious surface area is specified.

For the fraction that is not impervious, DHSVM handles infiltration
using the same parameterizations as for non-urban pixels.

A second parameter, the fraction of water stored in flood detention,
was also added. Runoff generated from impervious surfaces is
assumed to be diverted to detention storage.

The runoff diverted to detention storage is allowed to drain as a
linear reservoir, and re-enters the channel system in the pixel from
which it is diverted.

Surface runoff that is not diverted is assumed to enter the channel
siflstem directly, i.e., all urban channels are connected directly to the
channel system

We assume that the natural channel system remains intact, and we
retain the support area concept that defines the connectivity of
ixels to first order channels. However, impervious surface runoff
and drainage from detention reservoirs) is assumed to be connected
to the nearest stream channel directly

Once impervious surface runoff has entered a stream channel, it
follows the “standard” DHSVM channel flow routing processes.



Springbrook Creek catchment
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Springbrook Creek mean seasonal cycle
simulated current land cover and all mature forest
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Mercer Creek peak flows 1956-2010
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Understanding the effects of historical land
cover and climate change on the Puget Sound
basin — modeling and analysis



Study Areas
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Climate change signal last ~100
years

Precipitation mostly flat

ncreasing temperature, 0.5-1.0 C on average;
arger trends in Tmin than Tmax




Model Calibration
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Land cover
change
effects on
seasonal
streamflow
for eastern
(Cascade)
upland
gages
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Land cover
change
effects on
seasonal
streamflow
at selected
eastern
lowland
(Greater
Seattle
area) gages
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Land
cover
change
effects by
region
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Predicted
temperature
change
effects on
seasonal
streamflow
by region
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Predicted
temperature
change effects
on annual
maximum flow
at eastern
(Cascade)
upland gages
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Projected Future Climate Conditions A1B

Scenario

Basins Tmin/Year Tmax/Year Prcp/Year Tmin hist Tmax hist Prcp hist

(" C) (" C) (%) vs. future  vs. future vs. future

(0 (C) (%)

Deschutes 0.03 0.03 2.02 212 213 4.53
Cedar 0.04 0.04 1.90 1.88 1.91 3.24
Skokomish 0.03 0.04 2.16 2.04 2.05 6.59
Dosewallips 0.04 0.04 2.00 2.09 210 6.63
Lowland- 0.04 0.04 2.03 211 212 6.45

west

Annual change rate in 2000 — 2099;
Historical vs. future change: 2000 — 2099 vs. 1960 — 1999.
Average of Models: Hadgem1, Echam5, Cnrm_cm3, Hadcm, Cgcm3.1_t47,

lpsl_cm4



Puget Sound basin land cover
projections, 2027 and 2050
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Mid-century
seasonal mean
streamflow
projections
averaged over 20
GCMs, 2040s
(current land
cover)
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What (if anything!) can be transferred to LA Basin
issues (and stormwater recapture in particular)?

The differences:

1) Fewer storms, more intensity

2) Enhanced role of infiltration excess (vs
saturation excess) overland flow

3) Many/most ephemeral streams

4) Much different role of environmental
considerations (few or no fish!)



But — there are some common
considerations

1) Necessity for a regional modeling construct
to understand the spatial construct, and
where the “big numbers” are

2) Need to consider both climate and land
cover change (not clear that climate change
is a big deal for hydrology in the urban area)

3) Water quality is a key consideration,
especially in the urban area

4) Role of partially urbanized areas (it’s not all
concrete!)



