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Growing social concerns over the environmental externalities associated with business activities are pushing firms to identify
activities that create economic value with less environmental impact and to become more eco-efficient. Over the past two
decades, researchers have increasingly used frontier efficiency models to evaluate productive efficiency in the presence
of undesirable outputs, such as greenhouse gas emissions or toxic emissions. In this paper, we identify critical flaws in
existing frontier models and show that these models can identify eco-inefficient firms as eco-efficient. We develop a new
eco-inefficiency frontier model that rectifies these problems. Our model calculates an eco-inefficiency score for each firm
and improvements in outputs necessary to attain eco-efficiency. We demonstrate through a Monte Carlo experiment that
our eco-inefficiency model provides a more reliable measurement of corporate eco-inefficiency than the existing frontier
models. We also extend the single-output Cobb-Douglas production function to multiple desirable and undesirable outputs.
This extension allows for greater flexibility in the simulation analysis of frontier models.
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1. Introduction
Increasing social concerns over the environmental external-
ities of business activities are pushing managers to devise
strategies to mitigate their firms’ environmental impact
(Porter and Reinhardt 2007). Common examples of these
strategies include pollution prevention, waste reduction,
recycling, closed-loop supply chain management, and envi-
ronmental management systems (Klassen and McLaughlin
1996, Corbett and Kleindorfer 2001, King and Lenox
2002, Corbett and Klassen 2006, Delmas and Toffel 2008),
and managers are faced with the fundamental question of
how these mitigating strategies impact corporate perfor-
mance (King and Lenox 2002, Klassen and Vachon 2003).
Because a firm typically utilizes multiple input resources
to produce outputs, a variety of input and output variables
are required to assess corporate performance assessment.
Input variables can include labor, capital assets, invest-
ments in new product development, and raw materials.
Output variables include products, services, or revenue, as
well as undesirable by-products such as greenhouse gas
emissions and wastes. The potential trade-off relationships
among input and output variables make it very challeng-
ing for managers to aggregate these variables and present
the information as a simple index, to identify potential
improvements, and to facilitate decision-making (Delmas
and Doctori-Blass 2010). In this paper, we develop an

eco-inefficiency model that aggregates multiple inputs and
outputs into an eco-inefficiency score.

Frontier methodologies provide a composite inefficiency
score that represents the firm’s distance to the best-practice
eco-efficiency frontier (Charnes et al. 1978, Shephard
1970). The efficiency frontier includes the firms that pro-
duce more desirable outputs with fewer inputs and undesir-
able outputs than other firms in the sample. The efficiency
frontier also indicates the boundary condition that a firm
can achieve under the current production technology. Fron-
tier methodologies use a mathematical programming model
to extrapolate the efficiency frontier based on the input and
output quantities of the sampled firms. A firm’s inefficiency
score is measured by the improvements in outputs neces-
sary for this firm to reach the extrapolated frontier (i.e.,
increase desirable output quantities and reduce undesirable
output quantities), given the firm’s current input level.

Although several studies have developed frontier mod-
els to evaluate eco-inefficiency (e.g., Hailu and Veeman
2001, Färe et al. 1989, Chung et al. 1997, Seiford and Zhu
2002), our analysis shows that the current frontier mod-
els may have significant flaws. Specifically, under the cur-
rent frontier models, inefficient firms may be identified as
eco-efficient, firms’ inefficiency scores may improve with
an increase in undesirable outputs (i.e., nonmonotonic in
undesirable outputs), and inefficiency scores are insensitive
to changes in undesirable outputs. These models, however,
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have been widely used and a bibliographical search in
Google Scholar shows that these existing frontier models
have been cited more than 1,200 times.1

In this paper we build on the nonparametric frontier
approach to develop an eco-inefficiency model that over-
comes the validity problems of current frontier models.
We use a Monte Carlo simulation experiment to compare
the performance of our eco-inefficiency model and four
representative frontier models as recently identified by Hua
and Bian (2007), namely, the directional distance function
(DDF model; Chung et al. 1997), the hyperbolic model
(Färe et al. 1989), the Seiford and Zhu model (SZ model;
Seiford and Zhu 2002), and the “undesirable output as
input” (UINP) model (Hailu and Veeman 2001). The simu-
lation results show that our eco-inefficiency model outper-
forms current representative frontier models across different
parameters settings. We also show that our eco-inefficiency
model produces a more precise assessment of the ineffi-
ciency effect than other existing models.

This new model can be used to analyze undesirable out-
puts beyond the environmental context. Undesirable outputs
are a consequence of many corporate operations. Undesir-
able outputs include debts or loans, accidents, delays, cor-
porate social irresponsibility, defective products, and waste;
see Chen and Delmas (2011) and Chen et al. (2010) for a
more comprehensive discussion and references. Our model
can prove useful for evaluating operational efficiencies in
these contexts. Our paper also extends the frontier model
simulation methodology, which has been limited to a single
desirable output, to include multiple desirable and unde-
sirable outputs. Our simulation model allows for greater
flexibility in the analysis of frontier models for measuring
eco-inefficiency by integrating environmental and produc-
tive inefficiencies.

In the next section we introduce the general frontier
methodology and the four frontier models that have been
developed to handle undesirable outputs. In §3 we present
our eco-inefficiency model and demonstrate its advantages.
In §4, we use a Monte Carlo simulation to compare the
performance of our eco-inefficiency model with the other
frontier models. In §5 we summarize our findings and
contributions.

2. Frontier Methodology and
Existing Models

2.1. Fundamental Concepts of Frontier Models

The nonparametric frontier model, also known as data
envelopment analysis (DEA), uses linear programming to
aggregate multiple inputs and outputs of firms into a rel-
ative efficiency score (Charnes et al. 1978, Cooper et al.
2007). The set of feasible production plans, or technology
set, are the input–output combinations enveloped by the
frontier. If a firm is on this frontier, it is considered efficient
(Shephard 1970, Banker et al. 1984). If a firm is not on the

frontier, the distance to the best-practice frontier represents
the firm’s inefficiency.

We now describe the efficient frontier model in a linear
programming form. In the model, we consider three vec-
tors. The inputs X = 4x11 0 0 0 1 xM5 are the resources used to
produce the desirable outputs Y = 4y11 0 0 0 1 yN 5 and unde-
sirable outputs U = 4u11 0 0 0 1 uP 5. Given that we observe
K firms in our sample, the production technology set can
be formulated as follows (Shephard 1970, Charnes et al.
1978, Färe and Grosskopf 2004):

ì= 84X1Y 1U52 X can produce Y and U9 (1.1)

=

{

4X1Y 1U52
K
∑

k=1

zkxkm¶xm for m=110001M1 (1.2)

K
∑

k=1

zkykn ¾ yn for n= 11 0 0 0 1N 1 (1.3)

K
∑

k=1

zkukp = up for p = 11 0 0 0 1 P1 (1.4)

zk ¾ 0 for k = 11 0 0 0 1K
}

1 (1.5)

where 4xk11 0 0 0 1 xkM5, 4yk11 0 0 0 1 ykN 5, and 4uk11 0 0 0 1 ukP 5 are
the input and output vectors of the kth firm in the sam-
ple, and zk is the intensity variable associated with the kth
firm. The zk variable indicates the importance of the kth
firm in constructing the efficient frontier for a specific point
4X1Y 1U5 in the production set.

The constraints (1.2) to (1.5) form a polyhedron also
referred to as the production set, which is the collection of
feasible inputs and outputs 4X1Y 1U5 under the current pro-
duction technology. Points in the production set are those
achievable under the current technology constraints. The
production set as defined in (1) has the following properties
(Färe and Grosskopf 2004):

Property 1. 4X1Y 1U5 ∈ì and X1 ¾X imply 4X11 Y 1U5
∈ì0

Property 2. 4X1Y 1U5 ∈ ì and Y1 ¶ Y imply 4X1Y11U5
∈ì0

Property 3. 4X1Y 1U5 ∈ ì implies 4�X1�Y 1U5 ∈ ì for
0 ¶ �¶ 1.

A key presumption underlying these three properties is
that, if 4X1Y 1U5 is observed, this observation is by defi-
nition a member of the production set (i.e., the axiom of
“inclusion of observations”). With these three properties,
the frontier methodologies extrapolate the entire production
set based on the input–output observations in the sample.
The first two properties mean that, if 4X1Y 1U5 is observed,
then using more inputs to produce a smaller amount of
desirable outputs (i.e., 4X11 Y11U55 is also feasible. This is
called the strong disposability assumption, because inputs
or outputs can change unilaterally without compromising
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each other. If undesirable outputs can be generated without
subsequent cost or damage, undesirable outputs are said to
be strongly disposable and the production set is the same
as (1) except we replace (1.5) with (2):

K
∑

k=1

zkukp � up for p= 1� � � � � P � (2)

By contrast, under the weak disposability assumption,
a reduction in undesirable outputs of �X�Y �U� will result
in a reduction of desirable outputs. This property is
expressed through the equality constraint (1.4). Here, weak
disposability only applies to undesirable outputs, because
we assume that producers cannot dispose freely of the
undesirable outputs. For example, electric utility plants may
need to invest in carbon capture devices to reduce their
greenhouse gas emissions (Gibbins and Chalmers 2008).

Figure 1 displays a production set with a desirable out-
put y and an undesirable output u to illustrate how to com-
pute an inefficiency score. The horizontal axis represents
the undesirable output u and the vertical axis represents the
desirable output y. We divide the output quantity of each
firm by its input quantity to evaluate firms’ eco-inefficiency
based on y and u. Firms with a high eco-efficiency are
those situated in the upper-right corner of the graph, where
they produce more desirable outputs and low undesirable
outputs. We use piecewise-linear segments to extrapolate
the eco-efficient frontier by linking firms in the upper-right
corner. Firms on the frontier are considered eco-efficient
because no other firms in the production set can produce
more desirable outputs and fewer undesirable outputs.

In Figure 1, the frontier is the line segment “0abcd” if
we assume that the undesirable output is weakly dispos-
able, and is “0abce” if the undesirable output is strongly
disposable. It is also important to note that the cd por-
tion of the efficient frontier is dominated by the point c;
i.e., c produces a higher quantity of the desirable output

Figure 1. Illustration of the frontier model under dif-
ferent disposability assumptions.
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y and a lower quantity of the undesirable output u. We
call the cd portion of the frontier the misspecified effi-
cient frontier. However, the “ce” portion of the frontier
(under the strong disposability assumption) is not fully
efficient, because points on “ce” produce as many desir-
able outputs as c does, but they produce more undesir-
able outputs than c. As we explained earlier, in the strong
disposability assumption, undesirable outputs are free, and
therefore firms do not need to allocate resources to com-
pensate for the emissions of undesirable outputs. The dif-
ference in disposability assumptions is characterized by the
inequality signs for the undesirable output constraints (1.4).
As a result, the production set associated with the strong
disposability assumption is larger than the production set
under the weak disposability assumption (see Figure 1).

In a frontier model, the inefficiency score of a firm rep-
resents the firm’s distance to the efficient frontier. The inef-
ficiency score is computed as an optimization problem,
in which the efficient frontier is the boundary of the feasible
region. An objective function determines both the direction
of the evaluated firm toward the frontier, as well as how
the distance between the firm and the frontier is calculated.
As shown in Figure 1, different frontier models may adopt
different assumptions (e.g., weak disposability or strong
disposability assumption) and different objective functions
to calculate inefficiency scores. The inefficiency score and
the benchmark target depend on these two settings. For
example, firm f in Figure 1 is eco-inefficient because it is
not on the efficient frontier, whereas firms a, b, and c are
eco-efficient. However, firm f can move in different direc-
tions to reach the frontier. Next we introduce four frontier
models for undesirable outputs.

2.2. Current Frontier Models for
Undesirable Outputs

In this section we give a brief overview of four represen-
tative frontier models that incorporate undesirable outputs:
the directional distance function (DDF model; Chung et al.
1997), the hyperbolic model (Färe et al. 1989), the Seiford
and Zhu model (SZ model; Seiford and Zhu 2002), and
the “undesirable output as input” (UINP) model (Hailu and
Veeman 2001). We first introduce the UINP and SZ mod-
els, which both assume strong disposability on undesirable
outputs and use the traditional DEA model mathematical
formulation (Charnes et al. 1978). Second we introduce the
DDF and hyperbolic models, which assume weak dispos-
ability on undesirable outputs. This second set of models
has been used widely in various industry contexts, includ-
ing banks, electricity industries, industry efficiency, provin-
cial governments, agriculture, and airports; see Chen et al.
(2010) for a discussion and references to these applications.
Figure 2 provides graphic illustrations of these four models.

The UINP model treats undesirable outputs as inputs,
because firms are expected to minimize their input
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Figure 2. Illustration of the four frontier models for undesirable outputs.
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consumption (Hailu and Veeman 2001). The UINP model
is therefore identical to the traditional DEA model; namely,

max
{


UINP � �X�
UINPY �U� ∈�UINP

}

(3)

where �UINP is constructed by replacing the (1.4) of �
with

∑K
k=1 zkukp � up for p = 1� � � � � P ; i.e., the strong

disposability condition. The inefficiency score (i.e., the
optimal value of (3), denoted by 
∗

UINP) represents the extent
to which a firm can scale up its desirable outputs, given
its current inputs and undesirable outputs. For this rea-
son, the UINP model has been criticized for not accurately
representing the production process, because undesirable
outputs are modeled as inputs (Seiford and Zhu 2002).
In Figure 2(a), we observe that the UINP inefficiency
score measures the shortfall of desirable outputs Y , given
a firm’s current level of inputs and undesirable outputs.
The UINP model assumes that firms should improve their
eco-efficiency by increasing desirable outputs, but not by
reducing undesirable outputs.

Seiford and Zhu (2002) take a more heuristic approach to
undesirable outputs. The SZ model substitutes undesirable
output variables by auxiliary output variables. These new
variables are computed by adding a positive scalar to the

original undesirable outputs after multiplying them by −1.
The SZ model transforms undesirable output variables as:

Ũ =−U +W� (4)

where W is a predetermined vector making the new unde-
sirable vector Ũ positive for all firms. As shown in Fig-
ure 2(b), first the undesirable output vector U is multiplied
by −1 (e.g., a∗ = −a in Figure 2(b)). A translation vec-
tor W is then added to the negative vector −U so that
Ũ is strictly positive (e.g., a∗∗ = a∗ +W in Figure 2(b)).
The new undesirable vector �X�Y � Ũ � used to construct the
production set �̃ under the strong disposability assumption
(e.g., (2)). Thus, maximizing these transformed output vari-
ables is equivalent to reducing the undesirable outputs. The
inefficiency score of the SZ model is obtained from (5)

max
{


SZ � �X�
SZY �
SZŨ � ∈ �̃
}

� (5)

By maximizing the objective function 
SZ in (5), we are
scaling up Y and scaling down U at the same time (see Fig-
ure 2(b)). However, the inefficiency score (i.e., the optimal
value 
∗

SZ of (5)) may depend on the choice of translation
vector W (Sahoo et al. 2011).
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Table 1. Modeling assumptions and ranges of scores.

Assumptions on Score
Models undesirable outputs range Limitations

Hyperbolic efficiency Weakly disposable model 611�5 The model is a nonlinear optimization problem, and therefore if the
problem size is large it could be difficult to solve.

Directional distance
function (DDF)

Weakly disposable 601�5 The model requires us to specify a directional vector beforehand, and
the inefficiency score varies for different choices of directional
vectors.

Undesirable output as
input model (UINP)

Treated as inputs 611�5 Not representative of the production process; the model cannot
provide the benchmark value for undesirable outputs.

Seiford and Zhu’s
model (SZ)

Strongly disposable; undesirable
outputs are transformed
before computation.

611�5 The model requires us to specify a translation vector beforehand, and
the inefficiency score varies for different choices of translation
vectors.

Unlike the UINP and SZ models, the DDF and hyper-
bolic models impose a weak disposability assumption on
undesirable outputs. They have identical production sets,
but differ in their inefficiency indexes, which are illustrated
in Figures 2(c) and 2(d). In the DDF model, firms follow a
predetermined direction 4gY 1 gU 5 towards the frontier; the
inefficiency score �∗

d is the optimal value of problem (6):

max
{

�d � 4X1Y + �dg
Y 1U − �dg

U 5 ∈ì
}

0 (6)

In the DDF model, the inefficiency scores may vary with
different directional vectors (Färe and Grosskopf 2004).
In the hyperbolic model, the inefficiency is measured by
expanding the firm’s desirable outputs and contracting
undesirable outputs by the same factor. The inefficiency
score �∗

h is the optimal value of (7):

max8�h � 4X1Y�h1U/�h5 ∈ì90 (7)

The locus of projecting a firm to the efficient frontier
is hyperbolical; see Figure 2(d). Note that the hyperbolic
model is a nonlinear and nonconvex optimization problem,
and therefore the model is difficult to solve, especially for
a large sample.

The modeling assumptions and ranges of efficiency
scores of these four models are summarized in Table 1.
Note that in all four models, the efficiency status is
achieved when a firm obtains the lower-bound value (i.e.,
1 or 0), which means that further expansion of desirable
outputs and reduction of undesirable outputs is impossible.

An electronic companion to this paper is available as part
of the online version at http://dx.doi.org/10.1287/opre.1120
.1094. The online Appendix B in the electronic compan-
ion contains an illustrative application of the four existing
models, in which we use data from paper mill production to
test these four models. We find that these models not only
fail to capture actual fluctuations in undesirable outputs,
but also tend to produce misleading efficiency measure-
ment results. Importantly, the results show that both hyper-
bolic and DDF models are not monotonic in undesirable
outputs (i.e., increasing pollution quantities can improve
eco-efficiency scores and vice versa), which is contrary to
the general beliefs in production economics such as those
stated in Färe et al. (2005).

3. Mathematical Formulations

3.1. Eco-Inefficiency Model

In this section we show that in the DDF and hyperbolic
models firms’ eco-efficiency may improve with an increase
in undesirable outputs. We then propose a model that cor-
rects this issue.

We first show graphically the intuition behind our model,
and then present the mathematical formulations of our
model. In Figure 1, firm f obtains an inefficiency score
of � under the weak disposability assumption. When we
increase firm f ’s undesirable outputs to f ∗, the inefficiency
score becomes �∗, which is closer to the efficiency fron-
tier under a weak disposability assumption. Under a strong
disposability assumption the efficient frontier is “0abce,”
whereas under the weak disposability assumption it is
“0abcd.” Clearly, � is larger than �∗, and hence, under a
weak disposability assumption, firm f ∗ appears to be more
efficient than f . If firm f increases its undesirable output
further, it can overtake firm d and becomes efficient.

The reverse situation is similarly problematic: if a firm
manages to cut its undesirable output from the position
of f ∗ to f , it is considered less efficient in the model.
We can attribute this issue to the characteristics of the
predetermined directional vector or hyperbolic curve of the
conventional efficiency measure. Our model overcomes this
issue by allowing firms to select their own directions for
improvement to reach the efficiency frontier.

Our eco-inefficiency model is presented below (for each
observation “o”):

E4xom1 yon1 uop5= max
1

N +P

{ N
∑

n=1

gyn
yon

+

P
∑

p=1

gup

uop

}

1 (8.1)

K
∑

k=1

zkxkm ¶ xom for m= 11 0 0 0 1M1 (8.2)

K
∑

k=1

zkykn ¾ yon + gyn for n= 11 0 0 0 1N 1 (8.3)

K
∑

k=1

zkukp ¶ uop − gup for p = 11 0 0 0 1 P1 (8.4)

zk ¾ 01 gyn ¾ 01 gup ¾ 0 for all k1n1p0 (8.5)
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The eco-inefficiency model uses an additive inefficiency
index similar to the DDF model (i.e., (8.3) and (8.4)).
This additive inefficiency index can be contrasted with
the radial inefficiency index in the UINP and SZ mod-
els, which assume that the evaluated firm could reach the
efficiency frontier by proportionally changing its unde-
sirable and desirable outputs. However, in practice there
is no guarantee that firms can improve their efficiency
by decreasing undesirable outputs and increasing desirable
outputs proportionally. Thus, this assumption may be unre-
alistic in many situations. Another advantage of model (8)
is that the benchmark target derived from the slacks-based
model such as (8) must be efficient regardless of the
type of disposability assumption, whereas the radial inef-
ficiency measure can identify dominated points as bench-
mark targets (Cooper et al. 1999, Tone 2001, Chen 2012).
We maximize the objective function in order to assure that
the evaluated firm is benchmarked with an efficient frontier
point. The variables gyn and gup in model (8.1) represent the
amount of output improvements that the evaluated firm can
make to reach its benchmark target on the efficiency fron-
tier. Correspondingly, the objective function is the average
magnitude of these improvements. For example, a score of
0.5 means that the firm can increase its desirable outputs
by 50% and reduce undesirable outputs by 50%.

The objective value of Equation (8.1) represents the over-
all degree of output inefficiency. It is calculated as the aver-
age amount of potential output improvement divided by
the observed output value, yon and uop in (8.1). The ineffi-
ciency score in theory can take value from zero to infinity.
However, if gyn/yon � 1 for all n, which is usually true in
practice, the score then has an upper bound of 1. A score
of zero value means that the evaluated firm is on the effi-
ciency frontier and has no output slacks (hence the firm is
efficient). If a firm’s score is positive, the larger the value,
the more inefficient the firm is. Model (8) is also a linear
approximation of the classical nonoriented Russel measure
(Cooper et al. 2007, pp. 102–104), in which the evaluated
firm’s inputs are contracted and outputs are expanded much
like in the hyperbolic model, but in Russel measure each
input and each output are allowed to choose a different
expansion or contraction factor (Cooper et al. 1999).

We illustrate our model in Figure 3, where we consider
one desirable and one undesirable output. In our model,
instead of using a fixed direction to reach the frontier, the
evaluated firm �u� y� is free to choose an improvement
direction that maximizes its potential for improvement, and
therefore its efficiency. This flexibility is consistent with
a fundamental concept of the efficiency frontier: because
every point on the efficient frontier is considered effi-
cient, different production mixes, as represented by differ-
ent points on the frontier, should appear equally “attractive”
for inefficient firms. We show in the next section that the
flexibility to choose an improvement direction helps avoid
issues associated with both a weak or strong disposability

assumption on undesirable outputs (i.e., result in output-
dominated benchmark targets).

The eco-inefficiency score provides an aggregate mea-
sure of a firm’s relative efficiency compared to other firms
in the sample. After solving the eco-inefficiency model,
we can also identify the efficiency target that the evalu-
ated firm can emulate. Specifically, the benchmark target
for firm o can be obtained as:

�xom� yon + gy∗n � uop − gu∗p � for all m�n and p� (9)

where �gy∗n � gu∗p � is the optimal solution to model (8).

3.2. Properties of the Eco-Inefficiency Model

In this section we show some important properties of the
model. Proofs of these results are provided in the online
Appendix C, available at http://dx.doi.org/10.1287/opre
.1120.1094. Theorem 1 shows that our eco-inefficiency
model is unit invariant in inputs and outputs:

Theorem 1. E�xom�yon�uop� is homogeneous of degree
zero in xomyon, and uop; i.e., if we replace the original data
�xom�yon�uop� by ��xom��yon��uop� for all k, where �, �,
and � are positive numbers, we still have E�xom�yonuop�=
E��xom��yon��uop� for each observations o.

The homogeneity (or unit invariance) property is useful
because it facilitates comparisons of efficiency across dif-
ferent measurement systems. The “unit-less” property of
efficiency scores has also long been recognized as impor-
tant in engineering and science; see the discussion and
examples in Cooper et al. (2007, Chapter 1). Without
the homogeneous property, the inefficiency scores would
depend on the unit of measurement (e.g., in pounds, kg, or
tons; or in Euros or dollars). This would make the interpre-
tation and comparison of the scores more difficult. Tradi-
tional DEA models, where all outputs are desirable outputs,

Figure 3. Illustration of the proposed eco-inefficiency
model.

u/inputs

y/inputs

(u, y)

(u – gu, y + gy)

0
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have the homogeneous property (Charnes et al. 2007). We
can easily verify that the DDF, hyperbolic, SZ, and the
UINP models also possess the homogeneous property.

Another important property that needs to be carefully
verified is the quality of the eco-inefficiency measure. Ide-
ally, we would expect that eco-efficient firms, as identified
by the model, should be “at least as good as” any members
in the technology set. Conversely, firms will be considered
inefficient only when they are dominated by at least one
point in the technology set. To answer this question, we
need to first define the dominance relationship in the tech-
nology set.

Definition 1. The production plan 4xom1yon1uop5 ∈ ì
is nondominated in outputs if there does not exist any
4xom, y′

on1 u
′
op5 ∈ ì such that 4xom1 y

′
on1 u

′
op5 6= 4xom1 yon1

uop5 ∈ ì while y′
on ¾ yon and u′

on ¶ uon. Otherwise, 4xom1
yon1 uop5 ∈ì is dominated.

The next theorem shows that the eco-efficiency status is
equivalent to the nondominance status in the technology set.

Theorem 2. E4xom1yon1uop5 = 0 if and only if 4xom1yon1
uop5 ∈ì is nondominated in outputs.

Theorem 2 implies that our eco-inefficiency model
always identifies nondominated benchmark target points.
Graphically, it means that the eco-inefficiency model
always locate points on the efficiency frontier as bench-
mark target points (see Figure 3). Algebraically, Theorem 2
implies that the constraints on undesirable outputs (8.4)
are always binding, and therefore eco-inefficiency scores
from model (8) do not depend on the type of dispos-
ability assumptions imposed on undesirable outputs. This
characteristic separates our eco-inefficiency model from
other competing models described earlier, in that our model
does not depend on the disposability assumption, and by
Theorem 2 we can show that the benchmark targets (i.e.,
Equation (9)) from our eco-inefficiency model are always
nondominated. By contrast, the benchmark targets for some
firms under the weak disposability assumption may be the
following: given the input vector X, the DDF and hyper-
bolic models may result in a benchmark point 4u∗1 y∗5 sat-
isfying

∑K
k=1 z

∗
kykn > y∗

n for n= 11 0 0 0 1N , and
∑K

k=1 z
∗
kukp =

u∗
p for p = 11 0 0 0 1 P , where z∗

k’s are the optimal solution
from these two models and 4u∗1 y∗5 is calculated according
to model (6) or (7). The 4u∗1 y∗5 in this situation is dom-
inated in desirable outputs by the efficiency frontier (i.e.,
the left-hand side values of the constraints). Formally, the
equality constraints limit the solution space of zk and how
the other observations (i.e., all the inputs and outputs on
the left-hand side of constraints) can span the benchmark
point 4u∗1 y∗5. As noted earlier (see also Figure 1), it is
for the same reason that the benchmark point may even be
dominated in terms of desirable and undesirable outputs.

For instance, now consider a simple example, where we
evaluate an observation 4x1 y11 y21 u11 u25= 4115151151105
against two other observations 4111011115175 and

4111111017155. The first observation is dominated by the
other two in all desirable and undesirable outputs, but the
first observation is considered environmentally efficient in
both the hyperbolic and DDF models (with all components
of the directional vector set to 1; i.e., gy = gu = 1). This
also suggests that the first observation is its own benchmark
point. On the other hand, when the strong disposability
assumption is imposed, the benchmark targets 4u∗1 y∗5 may
be weakly dominated in outputs (Cooper et al. 2007; see
Figure 1). This limitation holds for the UINP and the SZ
models, because they both assume a strong disposability on
undesirable outputs.

Theorem 2 allows us to check whether a firm has been
misclassified as an efficient firm in the DDF and hyperbolic
models:

Corollary 1. If firm “o” is efficient in the DDF or
hyperbolic model 4È∗

d = 0 or È∗
h = 15 but inefficient in the

eco-inefficiency model (i.e., E4xom1yon1uop5 > 05, then firm
“o” is dominated in outputs in ì.

Corollary 1 applies to firms located on the misspecified
efficient frontier due to the weak disposability assumption
(see Figure 1 the “cd” line). These firms are dominated
points in the production set, but in the DDF and hyperbolic
models these firms may be identified as efficient (see Fig-
ures 1 and 2). If a firm appears efficient in these two mod-
els but inefficient in the eco-inefficiency model, this firm
must be dominated (therefore inefficient) in the production
set. In the application to the paper mill production data in
the online Appendix B, firms whose efficient targets are on
the misspecified efficient frontier in the DDF and hyper-
bolic models can obtain distorted inefficiency scores (see
Figure 1). We can similarly verify whether a firm has the
above problem by calculating their efficient targets under
these two models. Then we can apply Corollary 1 and ver-
ify whether the firm’s eco-inefficiency score is equal to 0.

4. Monte Carlo Experiment
The paper mill data analysis presented in the online
appendix offers some initial evidence about the drawbacks
of the current frontier approaches for eco-efficiency. To fur-
ther explore these limitations, we employ a Monte Carlo
experiment to compare our model with the other four fron-
tier models. To be comprehensive, we also include a hybrid
approach that combines our eco-inefficiency model (8) and
the SZ model (5). Specifically, the hybrid model presented
in (10) integrates the technique of translating the undesir-
able outputs as were used in the SZ model (5) and the
additive efficiency measure as in our eco-inefficiency model
(for each observation “o”):

E4xom1 yon1 uop5= max
1

N +P

{ N
∑

n=1

gyn
yon

+

P
∑

p=1

gup

uop

}

1

K
∑

k=1

zkxkm ¶ xom for m= 11 0 0 0 1M1
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K
∑

k=1

zkykn ¾ yon + gyn for n= 11 0 0 0 1N 1

K
∑

k=1

zkũkp ¾ ũkp + gup for p = 11 0 0 0 1 P1

zk ¾ 01 gyn ¾ 01 gup ¾ 0 for all k1n1p1 (10)

where ũkp = −ukp + Wp for all k and Wp is a parameter
satisfying Wp > maxk8ukp9 for all p. Like the SZ model (5),
the hybrid model (10) translates the undesirable outputs
into ũkp. We next describe the production function used in
the simulation.

4.1. Production Function

In the production economics literature, researchers have
typically utilized the Cobb–Douglas production function to
generate the input and output samples because of its flexi-
bility and simplicity (e.g., Golany and Tamir 1995, Zhang
and Bartels 1998, Bardhan et al. 1998, Coelli et al. 2005,
Banker and Natarajan 2008, Kuosmanen and Johnson 2010).
Specifically, we use the two-input Cobb-Douglas model:

logy = f 4x11 x25+ � −�

= log�0 +�1 logx1 +�2 logx2 + � −�0 (11)

In Equation (11), the output quantity (y5 is the sum of the
Cobb-Douglas function f 4x11 x25, a random noise term (�5,
less the inefficiencies (�5 in the production process; x1 and
x2 represent two distinct inputs, whereas �1, �2 are the
parameters of the production function. This function corre-
sponds to the maximal output quantity that is technically
achievable by using 4x11 x25. The Cobb-Douglas function
exhibits increasing returns-to-scale (RTS) if �1 + �2 > 1,
constant RTS if �1 + �2 = 1, and decreasing RTS if �1 +

�2 < 1 (Coelli et al. 2005). Then the function f 4x11 x25
forms the efficient frontier that we use to benchmark firm
performance. The term � stands for sampling errors as com-
monly seen in most econometric models, and � represents
the inefficiency effect. The random variable � is typically
assumed to follow a standard normal distribution, whereas �
is assumed to follow a one-sided distribution, such as a half-
normal distribution, and is nonnegative (Coelli et al. 2005).

We illustrate the production function in Figure A.1 in
the online Appendix A. In Figure A.1 we plot a hypothet-
ical Cobb–Douglas production function with one input x
and one output y. Observed input–output quantities are rep-
resented by asterisks located on the upper and lower side
of the production frontier. Figure 4 also represents pro-
duction functions with increasing, constant, and decreasing
returns-to-scale. The deviation from the production func-
tion (e.g., y∗ − y05 results from the joint influence of the
noise and inefficiency terms (i.e., exp4� −�5).

The production function (11) leads to a single output.
However, the evaluation of eco-efficiency requires the con-
sideration of multiple outputs and a model that can inte-
grate both desirable and undesirable outputs. One approach

used in prior studies is to model undesirable outputs
as inputs in the production function (Koop 1998). This
approach is akin to the UINP model and therefore is
endowed with similar limitations (see Table 1). To avoid
these potential limitations, Fernández et al. (2002) use
two production functions to estimate the technical and
environmental efficiencies separately (i.e., the production of
desirable and undesirable outputs, respectively). The pro-
duction function of desirable outputs depends on inputs
only and the production function of undesirable outputs
depends on desirable outputs. This assumption, however,
can be problematic in many situations, because a firm’s
technical and environmental efficiencies are expected to be
correlated.

We develop a simulation framework for multiple desir-
able and undesirable outputs based on the concept from
Fernández et al. (2002). However, we model the techni-
cal and environmental efficiencies as two correlated ran-
dom variables. Specifically, we generalize the single-output
function (11) to a multiple-output production function
F 4X5 of N desirable outputs 4y11 0 0 0 1 yN 5 and P undesir-
able outputs 4u11 0 0 0 1 uP 5 as

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(12)

where A denotes the coefficient matrix and each row of A
has the log-linear structure of f in (11). As in the univariate
production function, all random noise terms � for differ-
ent outputs in (12) follow an i.i.d. standard normal distri-
bution. For the inefficiency effect, we distinguish between
the productive inefficiency �y and the environmental inef-
ficiency �u. The negative sign of the environmental ineffi-
ciency terms indicates that environmental inefficiency will
cause firms to produce more undesirable outputs. Figure 5
in the online appendix illustrates the relationship between
inputs, outputs, and the two inefficiency terms.

Specifically, �y and �u are the inefficiency effects asso-
ciated with the production of desirable and undesirable
outputs, respectively. The variable �y , the productive inef-
ficiency term, is nonnegative and can reduce the desirable
output quantities in F 4X5. On the other hand, �u, the envi-
ronmental inefficiency term, has the effect of increasing
undesirable outputs quantities from the efficient level in
F 4X5. We assume that �y and �u are positively corre-
lated (but not perfectly correlated). This is consistent with
empirical findings from studies that show a significantly
positive relationship between corporate environmental and
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Figure 4. Kendall’s tau under different numbers of
outputs.
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financial performance (e.g., Klassen and McLaughlin 1996,
King and Lenox 2002).

Based on the assumption made in the conventional
production function such as (11), we similarly assume
the two inefficiency terms in the multivariate produc-
tion function follow a bivariate half normal distribution:
��y��u� ∼ �N2�0����, where � is a semipositive definite
variance-covariance matrix. The joint distribution function
of ��y��u� is (Kotz et al. 2002, pp. 326–327):

p��y��u�=
2

��y�u

√

1−�2
exp

(

−��y/�y�
2−��u/�u�

2

2�1−�2�

)

· cosh
(

��y�u

�1−�2��y�u

)

� (13)

where �y and �u denote the standard deviation for �y

and �u, respectively. Note that the marginal distribution �y ,
�u is half-normal, which matches the distributional
assumption made in the univariate production function (10).
The variance-covariance matrix � of a bivariate normal dis-
tribution can be written as a function of the standard devia-
tions of ��y��u� and the correlation coefficient � between
��y��u� as (Gut 2009, p. 126):

�=

[

�2
y ��y�u

��y�u �2
u

]

� (14)

This covariance structure allows us to vary the
correlation between the productive and environmental effi-
ciency terms by assigning different values to � in a simu-
lation experiment. Based on Equation (12), the production
function used in our experiment is given by
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� (15)

To simplify the experimental setup, we let all outputs
share the same coefficient values in the production func-
tion (15), but the output values (i.e., yn and up� are con-
tingent on the noise terms associated with each output (��,
as well as the productive or environmental inefficiency
effects (i.e., �y and �u�. Once we specify the input and the
two stochastic terms in (15), we can calculate the output
vector on the left-hand side of (15).

4.2. Evaluation Criteria

With the simulated input and output data, we can use the
four frontier models discussed previously and our eco-
inefficiency model and compute inefficiency scores. Com-
paring the inefficiency scores with the inefficiency variables
in the simulation can indicate the performance of these
frontier models. In this section we introduce two criteria,
namely, correlation and error rate, which we use to evalu-
ate the performance of the six frontier models.

4.2.1. Correlation Criterion. The validity of the fron-
tier models hinges on how well the inefficiency scores cor-
respond to the true inefficiency status of firms. To measure
the validity of frontier models, we calculate the rank cor-
relation between the inefficiency scores and the simulated
inefficiency terms, which we operationalize as the ineffi-
ciency effect that frontier models are supposed to detect.
We calculate rank correlation because inefficiency scores
obtained from different frontier models may have their spe-
cific inefficiency indexes (see Table 1), and therefore rank
correlation provides a more consistent assessment.
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We expect that the rankings we derive from the inef-
ficiency scores correlate highly with the “real” rankings,
which we generate through simulation. Regarding the
choice of correlation measures, we use the Kendall’s tau
(�5 rank correlation coefficient. Kendall’s tau (�5 measures
the degree of agreement between the generated and mea-
sured efficiency rankings. The tau (�5 coefficient ranges
from −1 and 1, where “1” means a perfect match between
two ranking distributions, and “−1” conversely suggests
that one ranking distribution is the opposite of the other.
See Kendall and Gibbons (1990) for an in-depth exposition
of the Kendall’s tau (�5 statistic.

In the production function (15), eco-inefficiency con-
sists of productive inefficiency �y and environmental inef-
ficiency �u. We use the average of these two inefficiency
terms as the proxy of simulated eco-inefficiency (�avg =

4�y +�u5/25. Then we calculate the rank correlation coef-
ficient between �avg and the inefficiency score � obtained
from a frontier model:

� = corrkendall4�avg1 �50 (16)

4.2.2. Error Rate Criterion. In the paper mill exam-
ple (online Appendix B), we observed that some mills’
inefficiency scores decreased after we doubled their unde-
sirable outputs. This is a clear indication of the issues
raised by current frontier models, because the inefficiency
score should be nondecreasing as the firm produces more
pollution.

To measure the degree of inconsistency of frontier mod-
els, we record the number of times that the inefficiency
score decreases (therefore the firm appears to be less eco-
inefficient) after we experimentally double all undesirable
outputs of the evaluated firm. When a firm’s inefficiency
score decreases in this situation, we call it an error. More
specifically, we define the error rate for a frontier model as

�=

K
∑

k=1

�k

/

K where �k = 1 if �∗

k − �̃∗

k > 0 and

�k = 0 otherwise0 (17)

In (17), �∗
k stands for the inefficiency score of firm k

obtained using the original data, whereas �̃∗
k is the ineffi-

ciency score that we obtain from the same frontier model,
but computed with the firm k’s undesirable outputs dou-
bled. Therefore, �k is equal to one when the firm k’s score
is an error, as defined earlier, and � indicates the likelihood
of an error in the sample.

4.3. Parameters

In our experiment, we control for four factors that could
influence environmental efficiency estimates. These include
sample size, number of inputs and outputs, correla-
tion between productive and environmental inefficiencies,
and returns-to-scale properties of the production function.
Table 2 lists the simulation parameters in the experiment.

Table 2. Experiment parameters.

Parameters Value

Sample size 6251501100120013007
Number of inputs 2
Number of desirable and 2, 4, 6, 8, and 10

undesirable outputs
Correlation between the 6002100410087

productive and environmental
inefficiency terms (�5

Returns-to-scale parameters of Increasing RTS: �0 = 1,
the two-input Cobb-Douglas �1 = 0065, �2 = 0055.
function Constant RTS: �0 = 1,

�1 = 005, �2 = 005.
Decreasing RTS: �0 = 1,
�1 = 0035, �2 = 0045.

Probabilistic parameters
Distribution of the input Uniform61147

variable 4x11 x25
Error term distribution (�5 N40100365
Inefficiency term �N40150065�

distribution (�5

Covariance matrix of the
[

5006 � ∗ 5006
� ∗ 5006 5006

]

two inefficiency terms 4è5

Our choice of sample sizes is based on recent DEA simu-
lation studies (Banker and Natarajan 2008, Kuosmanen and
Johnson 2010). DEA-simulations have been mostly applied
to small samples (Zhang and Bartels 1998, Adler and
Yazhemsky 2010). This is because DEA is a nonparametric
approach and is generally more robust to small samples
than parametric approaches (e.g., the stochastic frontier
model; Seiford and Thrall 1990). However, because DEA
applications may involve larger samples, we include five
different sample sizes in the experiment (25, 50, 100, 200,
and 300), which correspond to small and large sample sizes
in the applications of frontier models (Banker et al. 1993,
Zhang and Bartels 1998). This allows us to test the perfor-
mance of these different models with different sample sizes.
We also vary the number of outputs to test whether the out-
put dimensionality impacts the performance of these fron-
tier models. In addition, we consider three sets of parameter
values corresponding to increasing, constant, and decreas-
ing RTS technologies.

Following Banker and Natarajan (2008), we generate
the input variables x1 and x2 from a continuous uniform
distribution between 1 and 4. We select three different
values for the correlation parameter � between the produc-
tive and environmental inefficiency terms: a low correlation
(�= 002), moderate correlation (�= 004), and high corre-
lation (�= 008). In the simulation, we also test the perfor-
mance of the model with more output variables. We do this
by multiplying the number of output variables by two (i.e.,
two desirable and two undesirable outputs).

We follow prior simulation studies of frontier models and
assume that the noise term has a standard normal distri-
bution and the inefficiency term a half-normal distribution
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(Pastor et al. 2002, Coelli et al. 2005, Greene 2005,
Kuosmanen and Johnson 2010). We also assume that the
productive and environmental inefficiency terms have a
bivariate half-normal distribution, and that these two terms
have equal variances for their marginal distributions. We
designate the variance parameters for the inefficiency dis-
tribution as �2

� = 0036 and �2
� = 5006.2 The above variance

parameter values are chosen for two main reasons. First,
to represent a realistic situation our experiment includes a
moderate measurement error. The ratio between the vari-
ances of simulated inefficiency and the noise distribu-
tions is equal to 5.13, which, according to Banker and
Natarajan (2008), corresponds to a situation with moderate
measurement errors. Second, we also want the inefficiency
score distributions that we obtain from the simulated input–
output data to be realistic. By using the chosen variance
values for the noise and inefficiency terms, the average
eco-inefficiency score in our experiment is equal to 0.388,
which is close to the average eco-inefficiency that we
obtained in our prior evaluation of U.S. electric utility firms
(Chen et al. 2010).3

4.4. Results

We replicate the simulation experiment 1,000 times under
the parameter values shown in Table 2. In this simula-
tion, we evaluate the frontier models with the average
rank correlation coefficients � and the consistency mea-
sure �. We compare the average performance statistics of
the five models under different sample sizes, inefficiency
correlation coefficients �, and returns-to-scale assumptions
of the multivariate Cobb-Douglas function. Full simula-
tion results (Tables E.1 to E.3) can be found in the online
Appendix E of the ecompanion for this paper (available at
http://dx.doi.org/10.1287/opre.1120.1094).

4.4.1. Result 1: Rank Correlations. We now exam-
ine the correlation criterion that corresponds to the rank
correlation (�5 between inefficiency scores and simulated
inefficiencies. We first examine the influence of RTS
assumptions and the inefficiency correlation parameters �
on the rank correlation coefficients (�5. Note that these two
parameters are usually exogenous factors in most appli-
cations of frontier models, so it is important to examine
their effects on different frontier models. Regarding the
effect of RTS assumptions on the correlation coefficients � ,
we pool the � coefficients of individual models obtained
under different parameter settings (i.e., sample size, ineffi-
ciency correlation parameter � correlation, and number of
outputs) and calculate summary statistics under three des-
ignated RTS parameters. Therefore, the � coefficients asso-
ciated with one particular set of parameters is considered
a sample; i.e., for each model, we obtain 3 ∗ 5 ∗ 5 = 75�
coefficient values, where the “3,” “5,” and “5” correspond
to the experimental levels of � values, number of outputs,
and sample sizes; see Table 2 for further details. The statis-
tics are summarized in Table E.1 in the online appendix.

Table E.1 shows that the � coefficients are robust to differ-
ent RTS settings and inefficiency correlation parameters �.
For each model, we applied the nonparametric Kruskal-
Wallis test to see if there are significant differences in the �
coefficients under different RTS assumptions (i.e., compare
three populations with 75 paired samples). The Kruskal-
Wallis test is employed because the distributions of � coef-
ficients are highly skewed to the right. The test results
suggest that the median � coefficients of all models are
not significantly different RTS assumptions at 4p < 10%5.
These results mean that the rankings derived from these
frontier models are robust to technological assumptions on
RTS, although the inefficiency scores of a firm may vary
under different RTS assumptions.

Table E.1 also shows the rank correlations under three
different inefficiency correlation parameters � (0.2, 0.4, and
0.8). The Kruskal-Wallis test result shows that rank correla-
tions under low, medium, and high values are significantly
different at the 1% significant level for all models. In
particular, the rank correlation � increases systematically
across all models as the � changes from low to high
values. A possible explanation is that, when the corre-
lation between two inefficiency terms is high, the simu-
lated observations tend to deviate from the frontier more
evenly among different outputs and move towards the inte-
rior of the feasible output space. This may increase the
likelihood that the inefficiency scores become more accu-
rate estimates of the average inefficiencies �avg defined
in §4.1.1. We tested the interactive effects between RTS
and the inefficiency correlation factors; the regression
results show that only � has a significant effect on ineffi-
ciency scores and no significant interaction effects between
� effects and RTS. Results are provided in the online
Appendix D of the ecompanion for this paper (available
at http://dx.doi.org/10.1287/opre.1120.1094). As our results
are consistent across different RTS conditions, we confine
our subsequent discussions on � coefficients to simulations
results based on the constant RTS assumption.

Figure 4 displays the � coefficient values under small
4n = 255 and large samples 4n = 3005. The average
increase in � coefficients when the sample size increases
from 25 to 300 is 12% for the eco-inefficiency model, 13%
for the UINP model, 150% for the DDF model, and 80%
for the hyperbolic model.

The simulation results show that the � coefficients
increase as the sample size increases except for the SZ
and the hybrid models (see Table E.2 in the online
Appendix E). Several studies have indicated the advan-
tage of using larger sample sizes in the frontier analysis
(Banker 1993, Grosskopf 1996). With a larger sample, the
frontier model has a higher likelihood to get a finer esti-
mation of the frontier. Therefore, a larger sample in gen-
eral helps reduce errors when calculating the inefficiency
score (e.g., Grosskopf 1996, Zhang and Bartels 1998). We
can also expect that a frontier model can gain a higher �
coefficient under a larger sample. The sharp increase in the
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� coefficients for the DDF and the hyperbolic model sug-
gests that the performance of these two models is more
sensitive to sample sizes than the other models (see the
above statistics). One possible reason is that a larger sample
not only improves estimation of the efficiency frontier for
the DDF and the hyperbolic model, but also mitigates the
problem associated with the weak disposability assumption.
For example, when the sample size is small, it is compara-
tively more likely to obtain a misspecified frontier in these
two models, and the degree of misspecification can also be
higher with a small sample (i.e., the “coverage” and “slope”
of the misspecified frontier; see Figures 2 and 5)—with a
large sample, there is higher likelihood that one can obtain
a sample point(s) above the misspecified frontier (e.g., Fig-
ure 2), which can mitigate the influence of a misspecified
frontier. The error rates that we obtained for these two mod-
els corroborate our speculations (see our discussion in the
next section).

Unlike the other models, the SZ and the hybrid models
show the opposite results in the presence of a large sample:
the � value drops by 38% for of the SZ model and 15% for
the hybrid model when the sample size increases from 25
to 300. We offer one possible explanation. We noted ear-
lier that the translation vector in the SZ and hybrid models
depends on the maximal undesirable output quantities, and
the sensitivity of the SZ model decreases as the translation
vector grows in magnitude (see the discussion in the paper
mill application in the online Appendix B). As we increase
the sample size, the chance of having more extreme obser-
vation also increases, which may ultimately bring down the
sensitivity and hence the � coefficient value.

Figure 4 also shows the � coefficient values for models
with 2, 4, 6, 8, and 10 outputs. The eco-inefficiency model
has the highest average � value among all six models under
small and large samples. The DDF and hyperbolic models
have lower � values for a higher number of outputs. This is
because when there are more undesirable outputs in these
two models, it is more difficult to find a feasible vector of
zk as in (1.5) to form a linear span

∑K
k=1 zku

∗
kp that contains

u∗
op for all p, where u∗

op is the benchmark value computed
according to models (6) or (7). As a result, increasing the
number of outputs also increases the chance and impact of
a misspecified frontier for these two models.

We also see from Figure 4 that the hybrid model, which
utilizes the additive efficiency measure and the inverse
translation technique from the SZ model, does not attain
high correlation scores, compared with the scores of the
eco-inefficiency model. We also observe that the perfor-
mance of the hybrid model is consistently lower than the
eco-inefficiency model across different settings. In addi-
tion to the influence of the translation vector mentioned
earlier, another factor that helps explain the low perfor-
mance can be seen from comparing the formulations of the
hybrid and eco-inefficiency models. Specifically, we can
rewrite the constraints for the undesirable outputs in the
hybrid model as

∑K
k=1 zk4Wp − ukp5¾ 4Wp − uop5+ gup for

p = 11 0 0 0 1 P , where Wp is the pth component of the trans-
lation vector W in the hybrid model. The above constraints
can be recast as

∑K
k=1 zkukp ¶ 4uop −gup5+Wp4

∑K
k=1 zk −15

for p = 11 0 0 0 1 P . The second set of inequality constraints
resembles the constraints over undesirable outputs in our
eco-inefficiency model, except that the right-hand side is
now added by a variable term 4

∑K
k=1 zk − 15 multiplied

by Wp. Because the value of
∑K

k=1 zk depends on the rel-
ative economy of scales of the firm “o” in an industry
(Banker et al. 1984), the inefficiency scores from the hybrid
model depends on the scale economy factor, which may
eventually lead to low correlation, as observed in our sim-
ulation experiment.

In summary, the simulation results indicate that our eco-
inefficiency model outperforms other existing models in
the correlation criterion. We also analyze how sample sizes
and the number of outputs may influence the performance
of the existing frontier models. We find that SZ and the
hybrid models have lower � values with a larger sample,
and the DDF and hyperbolic models have lower � values
for a larger number of outputs.

4.4.2. Result 2: Error Rate Criterion. Now we turn
to the � values of the six models. The � represents the
likelihood that the inefficiency score of an observation
decreases after we double the undesirable output quanti-
ties of this observation. The eco-inefficiency, SZ, hybrid,
and UINP models exhibit zero � values in the experi-
ment, which means that we do not find any instances of
errors for these four models without the weak disposabil-
ity assumption. The hyperbolic and DDF models, however,
show positive � values. Table E.3 in the online Appendix E
shows the � scores of the DDF and hyperbolic models
under different sample sizes, RTS, and inefficiency corre-
lation �.

First, we find that the RTS factor does not significantly
change the error rates (p > 10% in the Kruskal-Wallis test).
Therefore, our results regarding the effect of RTS suggest
that although RTS may change the inefficiency scores (and
hence the imputed benchmark points), RTS does not have a
significant impact on the efficiency rankings of firms. Sec-
ond, we find that the error rates for both models tend to
decrease with a larger sample. This finding is consistent
with our results of the effect of sample sizes on correla-
tion. Third, the average error rate becomes lower when we
increase the number of outputs. Our conjecture is that with
a higher output dimensionality, an observation is less prob-
able to have its inefficiency score calculated based on the
misspecified efficient frontier (see, e.g., line “cd” in Fig-
ure 1). Fourth, the simulation results confirm that problem
of the weak disposability assumption that we observed with
the analysis of the paper mill data. Although the average
error rates from the experiment seem low in magnitude,
we illustrate next that errors are much more likely to occur
for firms that have relatively high amounts of desirable and
undesirable outputs under the DDF and hyperbolic model.
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Figure 5. Illustration of 100 simulated data points �n=
100� �= 0�4�.
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In Figure 5, we use the simulated data to illustrate the
cause of errors in the DDF and hyperbolic models. For
ease of illustration, we use the single-input Cobb-Douglas
function from Banker and Natarajan (2008) to generate the
data points. The figure contains 100 points of simulated
desirable and undesirable outputs. Points that have led to
errors under the DDF model are circled with the dashed
line, and points that have yield errors under the hyperbolic
model are marked with asterisks.

This figure illustrates the following points. First, points
that have errors, as defined in §4.2.2, are those that iden-
tify benchmark targets on the misspecified efficient frontier
when doubling undesirable outputs. Therefore, the more
undesirable outputs a firm produces (compared with an
average firm in the sample), the more likely a measurement
error will occur for this firm under the DDF and the hyper-
bolic models. Second, the hyperbolic model is less prone
to errors than the DDF model. The result echoes what we
see in our simulation experiment (see Table E.3 in online
Appendix E).

5. Discussion and Conclusion
As environmental awareness and pressure increases, there
are pressing needs for managers and policymakers to use
effective tools to assess corporate performance accord-
ing to firms’ input consumption, products, and undesir-
able outputs that could create negative externalities to
the natural environment and society. However, undesirable
outputs, such as greenhouse gas emissions or hazardous
substances, usually do not have a fully functioning mar-
ket that provides objective information about the relative
importance of different factors. Consequently, aggregating
multiple productive and ecological factors into a compre-
hensive index becomes a real challenge to both academics
and practitioners.

In this paper, we develop a new nonparametric fron-
tier model to evaluate a firm’s eco-inefficiency. Our model

allows us to construct the best-practice efficient frontier
based on observed input–output quantities without the need
to make explicit prioritization assumptions. Our model pro-
duces an eco-inefficiency score in the presence of multi-
ple inputs and outputs. The eco-inefficiency score can help
firms understand their competitive standing in their own
industry and provide a concrete benchmark target for sub-
sequent efficiency improvement activities.

Our paper makes major contributions to the frontier lit-
erature. We identify a fundamental issue associated with
the weak disposability assumption on undesirable out-
puts in production economics. Specifically, we show that,
under this assumption, existing frontier models may gen-
erate unreasonable estimations of eco-inefficiency scores
and identify targets that are actually dominated in the pro-
duction set. We compare our model with four alternative
frontier models used in the literature. The results from the
Monte Carlo experiment show that our approach provides a
more robust measurement than these four frontier models.
In the experiment, the eco-inefficiency model has attained
higher rank correlations with the simulated inefficiency
effect than the other models across all experimental con-
ditions. We show that our eco-inefficiency model is guar-
anteed to identify eco-efficient points on the frontier, and
therefore rectifies the inconsistency problem in efficiency
measurement due to the weak disposability assumption on
undesirable outputs in previous models. The simulation
results confirm that the eco-inefficiency score is monotonic
in undesirable outputs. The simulation model we employed
also extends the traditional single-output production in the
literature, which can only generate a single desirable out-
put variable. We propose a new simulation framework
amenable to the production process of multiple desirable
and undesirable outputs. Our multioutput production func-
tion allows for greater flexibility and opens up a new path
for the analysis of frontier models.

Our eco-inefficiency model has important implications
for operations research and is not limited to the measure-
ment of productive efficiency for operations involving envi-
ronmental negative externalities. Indeed, many operations
produce undesirable outcomes. These include accidents,
delays, defective products, and waste. Our model can also
be used for the measurement of efficiency frontiers in these
situations.

Per definition, if outputs are undesirable, then the firm
should seek to minimize them. Therefore we need an
accurate frontier model that accommodates this. Carbon
dioxide, along with other greenhouse gases, is still unregu-
lated and is not priced in most markets. Without the price
information, companies may resort to a quantity-based effi-
ciency measure. In this case, the eco-inefficiency score is a
quantity-based measure that indicates the evaluated firm’s
distance to the frontier.

One behavioral assumption behind our model is that
firms are assumed to minimize their undesirable outputs.
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The incentive to do so is clear if the emissions are regu-
lated. However, there might be some other reasons for firms
to reduce these emissions; for example, reputation effects
and various benevolent side-effects such as improving pro-
duction leanness. A good example is greenhouse gasses,
which many of the largest firms are managing to curb, with
the strong belief that mismanagement of the environmen-
tal practice can endanger corporate long-term sustainabil-
ity (Delmas and Nairn-Birch 2011). More generally, we
are seeing increasing evidence about the impact of firms’
environmental records and stance toward sustainability on
corporate performance. An important body of empirical
literature shows that improved environmental performance
leads to better corporate performance (see the following
meta-analyses: Ambec and Lanoie 2008, King and Lenox
2002, Orlitzky et al. 2003). Increase in undesirable outputs
can increase risk exposure (e.g., NGO or environmental
activists’ antagonistic campaigns, future legislations, failure
to meet customers’ environmental standards), which may
eventually erode these companies’ bottom lines. For exam-
ple, greener suppliers are more likely to secure their market
share because green suppliers reduce the buyer’s environ-
mental risk (Delmas and Montiel 2009). Some firms reduce
their greenhouse gas emissions to reduce their risks, drive
innovation, and save costs (Delmas and Nairn-Birch 2011).

We also point out some promising research directions.
Because firms’ environmental performance is receiving
growing attention from market and governments, more
firms are interested in the potential interactions between
corporate eco-efficiency and different aspects of firm opera-
tions and management. The eco-inefficiency score provides
an ideal proxy for eco-inefficiency to be used in empiri-
cal econometric models. See Banker and Natarajan (2008)
for an updated procedure about how to regress inefficiency
scores on independent variables of interests. One of the
limitations of deterministic frontier models considered in
this paper (as opposed to stochastic frontier models; see
Coelli et al. 2005, Chapter 9, for an introduction) is that
they do not consider the influence of statistical noise. As
a result, the eco-inefficiency score may be sensitive to out-
liers in the sample or sampling errors. Therefore, a useful
direction is to incorporate a stochastic term into the fron-
tier formulation (e.g., Olesen and Petersen 1995, Post 2001,
Post et al. 2002). Another promising direction is to carry
out sensitivity analysis using bootstrapping (e.g., Simar and
Wilson 1998) for the eco-inefficiency model. One might
include stochastic price information in the eco-inefficiency
model, in addition to capturing the statistical noise. In this
paper we focus on the situation where output price infor-
mation is unavailable, and we calculate the eco-inefficiency
score based on the “quantities” of inputs and outputs. With
complete price information, it is also possible to calculate
the revenue efficiency of a firm when price information for
output variables exists (see online Appendix F). One could
also incorporate price into the objective function of the eco-
inefficiency model, such that the inefficiency scores reflect

the trade-off between undesirable and desirable outputs as
signaled by prices. In practice, however, price informa-
tion can be stochastic and can only be expressed in terms
of probability distributions. For instance, greenhouse gas
emissions have a price for companies operating under the
E.U. carbon-trading scheme. A potential application would
be to test how the carbon price fluctuation or pattern can
affect firms’ eco-efficiency.

Electronic Companion
An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1094.

Endnotes
1. From Google Scholar, Färe et al. (1989) receive 498 citations,
Chung et al. (1997) receive 389 citations, Seiford and Zhu (2002)
receive 209 citations, and Hailu and Veeman (2001) receive 105
citations (data retrieved February 28, 2012). These three papers
also exhibit an increasing trend in the number of citations per
year. Although studies citing these papers do not necessarily apply
the original models, our intention in indicating the number of
citations is to use that as an instrument to illustrate the persistent
and growing influence of these four models.
2. The values of the variances of the two stochastic terms are
taken from Banker and Natarajan (2008), where the distribution
parameters are �� = 0004 and �u = 0015. We multiple these two
values by 15 in order to obtain the desired average mean ineffi-
ciency, while maintaining a noise-to-signal ratio similar to that in
Banker and Natarajan (2008).
3. Chen et al. (2010) evaluated the eco-inefficiency of 85 U.S.
electric utility firms based on total sales (in MWH), three types
of undesirable gases, and four inputs, and obtained an average
eco-inefficiency score of 0.357 with a standard deviation 0.697.
We choose the parameters in Table 4 such that we can obtain
a higher sample average and standard division in the simulation
with two inputs, six outputs, and sample size 100 (average 0.388;
standard division 0.770). This is because prior studies have shown
that including fewer input and output variables in a larger sample
can lead to both higher sample average and variations for the
inefficiency scores (Zhang and Bartels 1998).
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