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A B S T R A C T   

Buildings contribute 40% of global greenhouse gas emissions; therefore, strategies that can substantially reduce 
emissions from the building stock are key components of broader efforts to mitigate climate change and achieve 
sustainable development goals. Models that represent the energy use of the building stock at scale under various 
scenarios of technology deployment have become essential tools for the development and assessment of such 
strategies. Within the past decade, the capabilities of building stock energy models have improved considerably, 
while model transferability and sharing has increased. Given these advancements, a new scheme for classifying 
building stock energy models is needed to facilitate communication of modeling approaches and the handling of 
important model dimensions. In this article, we present a new building stock energy model classification 
framework that leverages international modeling expertise from the participants of the International Energy 
Agency’s Annex 70 on Building Energy Epidemiology. Drawing from existing classification studies, we propose a 
multi-layer quadrant scheme that classifies modeling techniques by their design (top-down or bottom-up) and 
degree of transparency (black-box or white-box); hybrid techniques are also addressed. The quadrant scheme is 
unique from previous classification approaches in its non-hierarchical organization, coverage of and ability to 
incorporate emerging modeling techniques, and treatment of additional modeling dimensions. The new classi
fication framework will be complemented by a reporting protocol and online registry of existing models as part of 
ongoing work in Annex 70 to increase the interpretability and utility of building stock energy models for energy 
policy making.   

1. Introduction 

Buildings worldwide are responsible for 36% of energy use, emitting 
40% of direct and indirect CO2 emissions [62]. These numbers are ex
pected to rise due to growth in population and building floor area, 

increased access to energy in developing countries, and growth in 
energy-consuming devices. Reducing building energy use and increasing 
the flexibility of building operations are essential strategies for miti
gating the risk of catastrophic climate change. Indeed, the International 
Energy Agency (IEA) estimates that buildings in 2040 could be 40% 

* Corresponding author. 
E-mail address: janet.reyna@nrel.gov (J.L. Reyna).  

Contents lists available at ScienceDirect 

Renewable and Sustainable Energy Reviews 

journal homepage: http://www.elsevier.com/locate/rser 

https://doi.org/10.1016/j.rser.2020.110276 
Received 20 December 2019; Received in revised form 1 July 2020; Accepted 12 August 2020   

mailto:janet.reyna@nrel.gov
www.sciencedirect.com/science/journal/13640321
https://http://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2020.110276
https://doi.org/10.1016/j.rser.2020.110276
https://doi.org/10.1016/j.rser.2020.110276
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2020.110276&domain=pdf


Renewable and Sustainable Energy Reviews 133 (2020) 110276

2

more energy efficient than today, with savings driven by reduced energy 
need for space heating, water heating, and cooling [62]. 

The development of concrete strategies for effectively managing 
building energy use remains a key challenge. Building researchers and 
policy makers lack data for understanding how building energy use is 
expected to change over the next several decades, which is essential for 
identifying the specific efficiency and flexibility strategies that have the 
greatest impact on these changes. While access to these data at both a 
granular spatio-temporal resolution and for the building stock as a 
whole is improving, gaps in data coverage, consistency, and accessibility 
across countries must be addressed to support setting effective priorities 
for building technology research, development, and deployment 
programs. 

To address gaps in building energy use data at large scales, a group of 
international researchers that includes the authors is collaborating on an 
International Energy Agency (IEA) Energy in Buildings and Commu
nities (EBC) Annex “Building Energy Epidemiology”, or IEA-EBC Annex 
70. The concept of energy epidemiology as first defined by Hamilton 
et al. [54] is the study of energy use in a large population of buildings. 
The scope of research that falls within the energy epidemiology field is 
broad, including both modeling of energy use in the building stock under 
different sets of input conditions, analyses that identify correlations 
between energy use and influencing variables, and testing of causal 
hypotheses about the effects of implementing energy efficiency mea
sures across representative portions of a building stock. 

The guiding objective of IEA-EBC Annex 70 is to improve the use of 
data and models of building energy use to facilitate dramatic reductions 
in building energy use and greenhouse gas emissions. In support of this 
objective, we seek to identify and compare models of large-scale 
building stocks and their energy use that are broadly applicable across 
the international buildings research community. Accordingly, this paper 
proposes a framework for classifying building stock energy models that 
builds upon existing classification approaches while acknowledging 
emerging modeling techniques and identifying additional dimensions 
that characterize the development and use of such models. The intent is 
for the proposed classification to serve as a common framework for 
quickly comparing and assessing available building stock energy models 
across the scales of cities, regions, and countries. This, in turn, can 
facilitate evidence-based decision-making to support concrete actions to 
reduce the energy and emissions of the buildings sector, while assisting 
the increasing number of global, national, and sub-national scale ini
tiatives on sustainable development, such as the Sustainable Develop
ment Goals and the Global Covenant of Mayors for Climate and Energy, 
among others. 

The scope of the proposed classification scheme covers models of the 
buildings sector that: (a) represent multiple buildings that are often 
geographically co-located; (b) produce energy use metrics as an output; 
and (c) generate out-of-sample predictions. This includes multi-sector 
energy system and integrated assessment models in which the build
ings sector is represented. The proposed classification scheme does not 
pertain to models that: focus on a single building’s energy use in isola
tion; do not yield energy use as a primary output (e.g., focus exclusively 
on other building performance metrics such as indoor environmental 
quality or water use); or are purely explanatory or descriptive in nature 
[134]. 

We begin by reviewing previous efforts to develop building stock and 
energy model classifications, identifying critical gaps in these existing 
classifications and establishing the need for an updated classification 
framework. We then introduce a new classification scheme that builds 
upon the strengths of the existing model classifications while addressing 
their shortcomings in the context of currently available data resources 
and computational capabilities. Unique elements of the classification 
approach are enumerated in detail along with examples from the liter
ature that demonstrate their relevance to the task of building stock en
ergy modeling. The paper concludes by discussing potential applications 
of the proposed classification scheme – including its use in related IEA- 

EBC Annex 70 efforts to create a registry of building stock energy models 
and develop a complementary model reporting protocol – as well as 
limitations to its future use by buildings researchers. 

1.1. Summary of existing classification approaches 

To-date there have been multiple efforts to classify building stock- 
level energy models by technique and purpose. Foremost among these 
is a 2009 review by Swan and Ugursal [141], which summarizes major 
energy modeling techniques for residential sector end uses. The Swan 
and Ugursal classification has gained wide acceptance among building 
stock modelers, as evidenced by its large number of citations to date in 
other studies.1 The designation of “top-down” models, or those that 
begin with an aggregate view of a system that may subsequently be 
broken down into constituent sub-systems, and “bottom-up” models, or 
those that begin with a detailed representation of a system’s constituent 
parts that may be aggregated up to the whole-system level, has long been 
used for many types of modeling. Swan and Ugursal [141] extended 
these concepts to the modeling of residential building stock energy use, 
identifying eight major types of modeling techniques under the general 
top-down and bottom-up categories (Fig. 1). 

Other classification systems define the building stock energy 
modeling space more broadly than the Swan and Ugursal classification. 
For example, Keirstead et al. [66] reviewed all studies on urban energy 
system models, including other major energy systems such as trans
portation, and classified each model’s purposes and category. Building 
stock energy modeling is a subclass of “building design” in their schema, 
but few details are given on the specific techniques used for this model 
subclass. Referring to the OpenMod initiative, Limpens et al. [76] per
formed an extensive review of 53 existing energy models and tools. Most 
of them adopt an energy systems analysis approach with the electricity 
sector as their main scope. Thirty-one of the models reviewed cover the 
”heating” sector (of which the buildings sector is a part), although half of 
them only do so partially (through combined heat and power). In 
addition to the sector coverage, Limpens et al. [76] classify the models in 
terms of optimization vs. simulation, ”openness” (in terms of usage and 
source code) and time (resolution and run time). 

Two other review papers discuss classification in the context of 
appropriateness for building energy policy making. Brøgger and 
Wittchen [17] adopt the general Swan and Ugursal classification, while 
discussing the appropriateness and accuracy of each model type in the 
context of European policy-making. Sousa et al. [137] present a review 
of building stock energy models specific to the United Kingdom, 
comparing and contrasting the capabilities for each, utilizing the general 
bottom-up and top-down divisions provided in Swan and Ugursal. 

Few studies have attempted to expand upon the Swan and Ugursal 
classification of top-down modeling techniques. Ahmad et al. (3) 
perform a comprehensive literature inventory of existing data-driven 
building stock energy modeling studies, creating their own four classi
fications of data-driven modeling in the process based on specific sta
tistical and machine learning techniques. Li et al. [75] provide a 
classification tree nearly identical to Swan and Ugursal, adding a few 
elements to the top-down branch, including “other” and “statistical” 
top-down sub-branches as well as a statistical modeling technique that 
relies on physical input variables. The majority of this review article, 
however, focuses on bottom-up applications and the new top-down 
techniques are not explored in detail in the text. 

For bottom-up models, the general division between “statistical” (i.e. 
data-driven/black-box) and “engineering” (i.e. physics-based/white- 
box) models has endured in multiple works recategorizing models. For 
example, Nageler et al. [96] utilize the general Swan and Ugursal clas
sification for bottom-up models. The same physics vs. data-driven model 

1 https://scholar.google.com/scholar?rlz=1C5CHFA_enUS846US846&um 
=1&ie=UTF-8&lr&cites=464700330571940757 (accessed 06/30/2020). 
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split is followed by Gao et al. [50] in a paper that provides an extensive 
review of the latter. Soto and Jentsch [136] accept the classification and 
comparatively review five statistical and seven building physics 
bottom-up energy models. Kavgic et al. [65], another heavily-cited 
paper, directly adopts this simplified Swan and Ugursal bottom-up di
vision, adding in a “hybrid” category that combines data- and 
physics-driven approaches. Mastrucci et al. [85] also focus on bottom-up 
models using this general classification, but extend beyond demand 
modeling to include a multi-level life cycle analysis framework to ac
count for embodied energy. This article also makes a distinction between 
the energy modeling portion of an assessment and the different stock 
aggregation methods - something of increasing importance to bottom-up 
models. 

Other publications have expanded upon the bottom-up sub-class of 
models in Fig. 1. Zhao and Magoulès [166] classify methods to predict 
building energy consumption into engineering, statistical, neural net
works, support vector machines and grey models, where the latter 
combines methods. Wei et al. [160] draw further on the Zhao and 
Magoulès [166] paper by defining white-box models as those that input 
detailed physical information and black-box models as those that input 
historical data, with grey-box models again using combined approaches. 
The authors also distinguish between data-driven approaches that are 
used for prediction (ANN, support vector machine, statistical regression, 
decision tree and genetic algorithms) vs. classification (k-means clus
tering, self-organization map, hierarchical clustering). Reinhart and 
Davila [116] develop one of the first overview papers specifically on the 
Urban Building Energy Modeling (UBEM) sub-class of bottom-up 
models. The paper compares published models and offers a high-level 
overview of approaches. Reyna et al. [118] develop an orthogonal 
classification focused on building interactions (building-building, 
building-transportation, etc.) and provide cases leveraging the Swan and 
Ugursal classification. Ahmad et al. [3] conduct a comprehensive review 
on energy-demand prediction models for buildings at urban and rural 
building levels. Each of these publications reference building stock en
ergy modeling capabilities far beyond those outlined in the original 
Swan and Ugursal paper. The development of new approaches necessi
tates renewed evaluation of building stock energy modeling and the 
advantages and disadvantages of emergent capabilities. 

1.2. The need for an updated classification 

When the Swan and Ugursal classification was published in 2009, 

building stock energy models were limited in number and functionality. 
Three major developments have increased the capabilities and appli
cations of current building stock energy models: 1) big data, enabled 
through advances for example in the area of utility energy data access, 
has increased the amount of empirical evidence that can be integrated 
into model development and calibration; 2) computing power has 
increased the availability and decreased the costs of large-scale simu
lation through cloud computing and access to supercomputing; and 3) as 
modelers adapt to increased data and computational capabilities, many 
models now use multiple modeling techniques to estimate both energy 
use and its driving variables; such models don’t fit cleanly within a 
single category and/or include dimensions that are not captured by a 
high-level classification approach. These issues are detailed further here. 

In the past ten years, increasing amounts of data have been collected 
on both model inputs (e.g., building characteristics, geospatial infor
mation for individual buildings, operational schedules, and occupant 
behavior) and outputs (e.g., energy use); these improved data can 
inform more accurate models of building stock energy with finer spatio- 
temporal resolutions. For example, European Energy Performance Cer
tificates [36] and benchmarking mandates in the United States [144] are 
increasing data collected on building characteristics and energy per
formance. Moreover, while utilities have long restricted access to 
account-level energy use data, there is now a growing recognition that 
these data are essential for decision making for the public good in the 
face of climate change [9]. In California, for example, universities have 
been able to obtain account-level energy use data under non-disclosure 
agreements, and municipalities are also able to access aggregated utility 
data for their jurisdictions [22]. Access to these data allows linkages to 
be created through geocoding to building/parcel attributes, thereby 
revealing the relationships between energy use and building vintage, 
use-type, square footage, and socio-demographic attributes [44,111]. A 
transition to using such granular, empirical energy use data is dramat
ically improving the spatial resolution and predictive abilities of build
ing stock energy models. Some classification systems for whole (i.e. 
individual) building modeling and calibration have been extended to 
cover these advancements (e.g. Fumo [46]), but stock-level energy 
modeling classification systems have not been extended to cover newer 
data-driven techniques. 

Simultaneously, non-traditional data sources are augmenting avail
able data on buildings. For example, remotely-sensed data such as 
LiDAR and satellite imagery are being used to determine external 
characteristics such as building height, geometry, shading, solar 

Fig. 1. Swan and Ugursal’s 2009 model classification. Models of residential energy use are classified using a hierarchical tree structure that includes two main 
branches: one for “top-down” models, or those that begin with an aggregate view of a system that may subsequently be broken down into constituent sub-systems, 
and a second for “bottom-up” models, or those that begin with a detailed representation of a system’s constituent parts that may be aggregated up to the whole- 
system level. 
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irradiance, and even externally-placed building equipment [52,82,92, 
146,163]. All generate rich detail on the building stock, but new 
modeling techniques are required to leverage this information in full. 
Such techniques include geospatial simulation models [116], which 
simulate all or a representative subset of individual buildings 
comprising a stock using whole building energy simulation engines and 
geospatial data; system dynamics and agent-based models [43,83], 
which are able to explore causal effects and interactions across modeled 
entities (e.g., across individual buildings, or occupants within a build
ing); and machine learning models [8], which leverage big data re
sources to predict changes in building energy use at scale. 

Cloud-based computing has proven to be an important enabling 
technology for many of these computationally-intensive models, as the 
cost of cloud computing has decreased and the availability of web-based 
resources has improved [45]. Geospatial models, for example, dramat
ically expand upon the single-archetype assumption of previous 
bottom-up engineering model classifications in their ability to represent 
every building in a city, region, or country explicitly at a finely grained 
temporal resolution. Moreover, models utilizing these big data and 
cloud computing resources often combine multiple techniques that 
don’t fit neatly within the distinct “top-down” or “bottom-up” Swan and 
Ugursal designations, and such models may also explicitly represent 
additional variables that influence energy use as part of the model’s 
structure and outputs. Additional classification categories and layers are 
needed to capture the proliferation of such hybrid modeling techniques 
for representing both stock-level energy use and its key correlates. 

Beyond these gaps in existing classifications’ coverage of modeling 
techniques and mixed modeling approaches, previous classifications 
also lack guidance on how to assess the transferability and quality of 
models along dimensions that are implicit in the high-level classification 
diagram. In 2009, most models were bespoke and privately stored - 
standalone models developed to assess a single geographical area by a 
single group of people for a single purpose. Increasingly, stock models 
have become designed for wider applicability, allowing core modeling 
structures to be transferred to other cities or countries by varying model 
input data. As model transfer is being considered, additional language is 
needed to appropriately communicate key characteristics of the model 
such as handling of time dynamics, model and input uncertainty, and the 
geographic and spatial resolution and extent of models. Accordingly, 
there is a need to identify and describe such additional dimensions to 
complement a high-level model classification approach. 

2. Overview of proposed classification scheme 

The proposed building stock energy model classification scheme 
(Fig. 2) establishes a flexible framework for high-level model classifi
cation that: (a) builds from existing classification frameworks while 
accounting for emerging simulation-based, data-driven, and hybrid 
modeling techniques; (b) recognizes the potential sub-layers of a 
building stock energy model; and (c) encourages the description of 
additional model dimensions that are not readily captured by a high- 
level classification. 

In place of the hierarchical organization of existing classifications, 
the classification diagram in Fig. 2 groups building stock energy 
modeling techniques into one of four quadrants based on their design 
(top-down/bottom up) and degree of transparency (black-box/white- 
box).2 The four classification quadrants are thus: top-down/black box 
(Q1), top-down/white-box (Q2), bottom-up/black-box (Q3), and 
bottom-up/white-box (Q4). 

To illustrate how this new classification approach addresses gaps in 
the coverage of building stock energy modeling techniques in existing 

classifications, Fig. 2 includes examples of emerging data-driven and 
simulation-based techniques alongside established techniques: machine 
learning (Q4: bottom-up/white-box), system dynamics (Q2: top-down/ 
white-box), agent-based modeling (Q4: bottom-up/white-box), and 
physics-simulation (Q4). Additionally, Fig. 2 designates an area between 
each of the four classification quadrants for hybrid modeling techniques 
that combine techniques across (but not within) the quadrants. Details 
concerning the example modeling techniques identified in Fig. 2 are 
discussed in the next section. 

Fig. 2 shows three additional modeling layers that support the main 
energy layer of the classification. These supporting layers concern the 
representation of key energy use determinants: occupants energy- 
related behaviors within the modeled building stock, the characteris
tics of the building stock itself, and environmental context (physical 
conditions such as outdoor temperature and solar intensity as well as 
socio-economic conditions). Modeling techniques that directly represent 
such variables are expected to map to the same four quadrants shown in 
Fig. 2 for the energy layer, though specific techniques within each 
quadrant may be unique to the supporting layer. Where these supporting 
layers are only implicitly addressed in a building stock energy model, 
this should be noted alongside the model’s classification. 

Finally, Fig. 2 identifies four additional modeling dimensions that 
should be described as a complement to the high-level classification: 
dynamics, system boundaries, spatio-temporal resolution, and model 
uncertainty. Each of these dimensions represents an axis along which 
modeling approaches may vary independently of the high-level classi
fication quadrants and layers. While such dimensions are not readily 
captured by a high-level classification, their description provides 
important context about a model that further facilitates its assessment 
by the research community and comparison with similar building stock 
energy models. 

The following sections expand upon the classification quadrants, 
example modeling techniques, and additional model dimensions shown 
in Fig. 2, providing an overview of key concepts and relevant studies 
from the recent building stock energy literature. Collection of relevant 
literature sources was informed primarily by the domain expertise of the 
Annex 70 authors. A summary of the classification quadrants, the 
strengths and limitations of the modeling approaches they represent, 
and example literature references is provided in Table 1. 

2.1. Quadrants of the classification 

2.1.1. Q1: top-down/black-box 
In the new classification, top-down/black-box models remain mostly 

unchanged from previous classification schemes. This class of models 
estimates building stock energy utilizing readily-available, sector-wide 
historic variables such as demographics or economic indicators. These 
models typically exclude end-use energy attribution or rely on aggregate 
end-use functions that link energy demand and underlying socio- 
economic factors. Our classification maintains two major categories of 
top-down/black-box modeling techniques, econometric and technolog
ical, consistent with existing classification schemes. 

2.1.1.1. Econometric. Econometric models apply statistics and mathe
matics based on economic theory to forecast specific outcomes. For 
building stock energy modeling, commonly used economic indicators 
include demographics, fuel prices, household income, or the gross do
mestic product of an economy as a whole, which may be assessed at 
regional, national, or global scales. Econometric models were originally 
developed in the 1970s, stemming from the economic field, and are 
particularly useful for exploring high-level trends. For example, Lin and 
Liu [77] develop an econometric forecast of building energy consump
tion in China given heavy urbanization trends under three different 
future scenarios and estimate the rebound effect of energy efficiency. 
Broin et al. [19] model energy demand for space and water heating from 

2 Here, black-box refers to models in which underlying processes leading to 
outcomes are not directly interpretable, while in white-box models the internal 
model structure and influencing variables are directly interpretable. 
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Fig. 2. An updated classification scheme for building 
stock energy models. The scheme builds from existing 
classification approaches while contributing the 
following changes: 1) the classification eschews a 
hierarchical structure in favor of a more flexible or
ganization, grouping models into four quadrants 
based on whether each is top-down or bottom-up and 
black-box or white-box; models are tagged by their 
applicable quadrant(s) (Q1 for top-down/black-box, 
Q1/Q4 for hybrid, etc.), 2) examples of the 
emerging use of simulation-based and data-driven 
techniques in building stock energy modeling are 
included (e.g., system dynamics, agent-based models, 
machine learning) 3) hybrid models are identified 
that combine modeling techniques across quadrants, 
4) sub-layers representing key energy use de
terminants (e.g., people, building stock, environment) 
are represented; modeling approaches for each of 
these determinants could be mapped to the same four 
quadrants of the energy layer, and 5) additional di
mensions (e.g., system boundary, spatio-temporal 
resolution, dynamics, and uncertainty) are identified 
that should be described in parallel with mapping a 
model to the high-level classification quadrants.   

Table 1 
Summary of proposed building stock energy model classification quadrants, the strengths and limitations of the modeling approaches they represent, and example 
literature references.  

Classification 
Quadrant 

Approach Strengths Limitations Example References (Modeling Technique) 

Q1 (Top-down/ 
Black-box) 

Estimate aggregate building 
energy use from sector-wide 
socio- economic and/or 
technological variables 

Simple and computationally 
tractable, readily paired with other 
modeling frameworks(e.g., with 
bottom-up representations of 
energy demand in Integrated 
Assessment Models) 

Typically unable to represent 
impacts of specific technology or 
operation improvements/measures; 
unable to represent disruptive 
changes to building stock energy 
use due to reliance on historical 
data 

[2,19,31,41,77,112] (Econometric) [35,49, 
69,74,156] (Technological) 

Q2 (Top-down/ 
White-box) 

Represent physical causality at 
the aggregate building and 
technology stock level 

Able to represent the complexity of 
building stock energy use and its 
components at the aggregate level, 
including technology and building 
stocks, stock flows, and the 
evolution of the system over time 

Unable to link aggregate building 
energy use to building-level 
operations; challenging to represent 
spatial dimension; may require 
extensive data, time, and expert 
knowledge to fully represent system 
components and causal flows 

[32,33,39,95,107,167] (System dynamics) 

Q3 (Bottom- 
up/Black- 
box) 

Attribute building-level energy 
use to particular energy end 
uses(e.g. space heating, hot 
water usage, household 
appliances) utilizing statistical 
analysis of historical data 

Able to reveal important 
relationships between energy end 
use outputs and relevant input 
variables; relatively simple models 
with low data requirements may 
yield high explanatory or predictive 
performance 

Unable to explicitly represent key 
dynamics influencing energy end 
uses in buildings (e.g., occupant 
behavior, heat transfer through the 
envelope); in certain cases require 
large datasets to yield good 
predictive performance (e.g., 
machine learning models) 

[4,60,79,84,129,145] (Classic statistical) [5, 
68,104,110,110,120] (Machine learning) 

Q4 (Bottom- 
up/White- 
box) 

Simulate the physical 
relationships of processes at the 
building or energy end-use 
level 

Able to explicitly represent key 
dynamics influencing building 
energy end uses, building stock 
diversity, and the aggregate energy 
effects of changes to operations at 
the individual building level 

Require extensive data to represent 
detailed characteristics of the 
building stock and drivers of its end 
use patterns, computationally 
intensive, potentially challenging to 
pair with other modeling 
frameworks 

[18,119,152,153] (End-use distribution) [1, 
10,93,98,135,165] (Agent-based) [11,59,65, 
86,100,101,136] (Physics-simulation) 

Multiple 
Quadrants 
(Hybrid) 

Combine elements of the 
modeling approaches across the 
four classification quadrants 

May address the limitations of one 
modeling approach by 
complementing with the strengths 
of another; potentially more flexible 
in application and able to answer a 
broader set of analysis questions 

Often more complex in design and 
implementation – and by extension, 
more difficult to communicate and 
replicate – because of the need to 
harmonize multiple modeling 
approaches that may concern 
disparate scales and variables of 
focus 

[63,71,80,81,90,149] 
(Technological-econometric and end-use 
distribution) [142] (Machine learning and 
physics-simulation) [26,126] (Technological, 
system dynamics, and archetype)  
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1970 to 2005 in the residential sector of four EU countries using index 
decomposition,3 econometric models, and cointegration analysis. The 
spatial and temporal influences on energy demand in each country from 
the number of households, floor area per household, and unit con
sumption for space and water heating are isolated. Fazeli et al. [37] 
explore three separate econometric techniques to forecast fuel con
sumption associated with residential space heating in Nordic countries. 
Filippini and Hunt [41] estimate a stochastic frontier function for U.S. 
residential aggregate energy demand using panel data for 48 states from 
1995 to 2007. Dilaver and Hunt [31] forecast the relationship between 
Turkish household final energy consumption expenditures and resi
dential electricity prices by applying a structural time series model to 
annual data over the period from 1960 to 2008. Pourazarm and Cooray 
[112] employ unit root tests, cointegration, and error-correction models 
on annual time series of residential electricity consumption in Iran for 
the period 1967–2009 and forecast consumption through 2020. Adom 
and Bekoe [2] study electricity use in Ghana across sectors using two 
econometric approaches – autoregressive-distributed lag (ARDL) and 
partial adjustment model (PAM). Hussain et al. [61] study cross-sector 
electricity use in Pakistan using Holt-Winter and Autoregressive Inte
grated Moving Average (ARIMA) models and time series data from 1980 
to 2011; similar approaches are summarized in Ref. [14,64,70,123]. 

2.1.1.2. Technological. Technological models expand upon the inputs of 
econometric models to explicitly account for technological characteris
tics of the building stock, such as appliance saturation trends or 
adherence to building codes. Over the past decade, these models (and 
combined technological-econometric models, as reviewed in Ref. [38]) 
have largely supplanted pure econometric approaches. For example, the 
Austrian Institute for Economic Research presents a working paper 
exploring technology and economic impacts on residential energy de
mand [69]. Integrated Assessment Models (IAMs) often also derive total 
energy demand based on technological as well as demographic (popu
lation, population density), economic (income per capita), and 
climate-related inputs (heating or cooling degree days). For example, 
Eom et al. [35] utilize appliance efficiency trends alongside de
mographic and economic trends to project future energy consumption in 
China. Other IAMs that have technological modeling elements include: 
the EDGE model, which is used to explore scenarios of global energy 
consumption until 2100 across 7 regions [74]; the IMAGE model, which 
is used to explore lifestyle changes including reduced demand for space 
and water heating, a cap on home size, and reduced rates of appliance 
ownership [156]; and the compilation of results from 5 models (GCAM, 
IMAGE, MESSAGE, MERGE and REMIND) on energy demand scenarios 
that achieve a 2◦C warming and well-below 2◦C warming climate target 
[49]. 

2.1.2. Q2: top-down/white-box 
Previous classification schemes have generally neglected top-down/ 

white-box models, which represent physical causality at the aggregate 
building and technology stock level. This approach is distinct from the 
two existing top-down approaches that correlate economic (economet
ric) or technology (technological) indicators with building energy de
mand. In the new classification, we highlight system dynamics as an 
example of such a top-down/white-box modeling technique. 

2.1.2.1. System dynamics. Typically, system dynamics models are 
characterized by: a) a conceptual diagram of the building and technol
ogy stock and its aggregate-level feedback loops and b) quantitative 
models of aggregate-level building and technology stocks and flows. 
Stocks represent point-in-time quantities of interest (e.g., the national 

residential building stock), while flows represent time-varying additions 
to or subtractions from stock totals (e.g., annual additions/alterations/ 
subtractions to the residential stock from construction/retrofits/ 
demolition). 

There are several examples of system dynamics approaches in the 
building stock energy modeling literature. The Energy Policy Simulator 
[33] is a system dynamics model that represents the economy and en
ergy system across the buildings sector as well as the transportation, 
electricity supply, industry, and land use/forestry sectors. The Simulator 
assesses the effects of national energy and environmental policies on 
emissions, cash flows, consumers, and the composition of electricity 
generation, among other metrics, and it has been adapted for use across 
multiple countries. Onat et al. [107] develop a system dynamics model 
of greenhouse gas emissions from the U.S. residential building stock to 
explore the efficacy of different policies in stabilizing an increasing 
emissions trend. Model variables include the carbon footprint and en
ergy intensity of residential buildings, the number of new and existing 
green buildings, retrofit rate, employee travel characteristics, gross do
mestic product, and total population. Motawa and Oladokun [95] use 
system dynamics to characterize relationship between the building 
stock, occupants, and the environment (policy, climate, and economy) 
and simulate UK energy use and CO2 emissions. Eker et al. [32] build a 
system dynamics framework to explore interactions between various 
aspects of the UK’s housing stock. Causal loop diagrams are developed to 
assess as–built performance, retrofit rate dynamics, and the well–being 
of residents. Similarly, Zhou et al. [167] use a system dynamics 
approach to explore the turnover dynamics of the Chinese residential 
building stock. Finally, at the urban scale, Feng et al. [39] develop a 
system dynamics model of energy use and CO2 emissions trends for 
Beijing between 2005 and 2030. Six sub-models comprise socioeco
nomic, agricultural, industrial, service, residential, and transport pa
rameters, and flows within and between the sub-models are described 
using regression equations. 

2.1.3. Q3: bottom-up/black-box 
Bottom-up/black-box models utilize historical information to attri

bute building energy use to particular end-uses, assuming the conditions 
underlying the model prediction space mirror those of the model 
training space. From these relationships, building-level end use esti
mates can be extended to the scale of the entire building stock. 

2.1.3.1. Classical statistical. Classical bottom-up statistical techniques 
have traditionally been used to predict either whole building or end use 
energy consumption, developing correlations between these outputs and 
key input parameters. In the new classification, this category encom
passes both the regression-based and conditional demand analysis 
techniques identified in previous classification frameworks [141]. When 
covering economic inputs, bottom-up statistical models differ from the 
macro-econometric models of Q1 in that they enable micro-economic 
studies with a higher level of detail and often cover the interactions 
between households and individuals (e.g. building owners) and orga
nizations [86] (e.g., in studies of the UK and Germany [14], China [79], 
and Denmark [73]). 

Bottom-up statistical models are found across national, regional, and 
urban scale studies of building stock energy use. At the national scale, 
Santin et al. [129] utilize bottom-up statistical techniques to identify the 
relative importance of building characteristics and occupant behavior to 
stock-level residential energy consumption in the Netherlands. Liu et al. 
[79] study the effect of a new type of urbanization on energy con
sumption in China through a spatial econometric analysis. At the urban 
scale, Howard et al. [60] develop a regression model for end-use 
building energy consumption in New York City, linking consumption 
to specific locations throughout the city. Mastrucci et al. [84] statisti
cally downscale city energy use to the building level for Rotterdam using 
linear regression. Some studies also use bottom-up statistical techniques 3 Decomposition approaches are noted in multiple other studies (e.g., 

Ref. [21,58,117]). 
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to support energy utilities, developing forecasts of day-ahead energy 
demand that inform utility-scale management, control and verification 
strategies. For example, Akpinar and Yumuşak [4] predict household 
natural gas consumption in the Turkish Sakarya Province by using a 
sliding window technique with multiple linear equations to select the 
most suitable data set sizes, based on data from 409 days containing 
meteorological conditions, customer numbers, and holidays. Tian et al. 
[145] investigate local variations in energy use intensity for electricity 
and gas in London using geographically weighted regression, a mixed 
model, and a Bayesian hierarchical model. 

2.1.3.2. Machine learning. Machine learning techniques aim primarily 
at predictive accuracy, utilizing a wide range of algorithms to find 
patterns in rich but large and unwieldy datasets. The primary difference 
between machine learning models and classical bottom-up statistical 
techniques is the former’s nearly-exclusive focus on predictive accuracy, 
while the latter are often also used to identify relationships between 
variables and test their significance (i.e., statistical models are 
commonly used for inference). The new classification generalizes 
related models identified in existing classifications (e.g., neural net
works in Ref. [141]) to a broader set of machine learning techniques. 

Machine learning models of building stock energy use have seen a 
large increase in the literature over the last decade, though they are 
rarely used at the regional and national scales due to their heavy data 
and computational requirements (see reviews in Ref. [7,121]). At the 
urban scale, Tso and Yau [147] compare classical statistical regression 
techniques to decision trees and neural networks to evaluate the accu
racy in predicting energy consumption in Hong Kong. The results indi
cate that all three models are valid for this type of prediction, with the 
decision tree and neural network performing slightly better in the 
summer and winter, respectively. Robinson et al. [120] use multiple 
machine learning methods (linear regression, gradient boosting regres
sion, and random forest regression) to estimate the energy use of the 
commercial building stock in different U.S. metropolitan areas based on 
floor area, principal building activity, number of floors, and hea
ting/cooling degree days. Zhang et al. [164] use a similarly wide range 
of machine learning techniques to model electricity and natural gas 
consumption in U.S. homes, complementing a separate analysis of 
transportation-related energy use. Papadopoulos et al. [109] use an 
unsupervised learning algorithm to cluster buildings in New York City 
based on their energy use. Kontokosta and Tull [68] develop a predictive 
model of electricity and natural gas use at the building, district, and city 
scales using training data from energy disclosure policies and predictors 
from widely-available property and zoning information. Three different 
machine learning algorithms (least squares regression, support vector 
machines, and random forest) are fit to the city’s energy benchmarking 
data and used to predict energy use for every property in New York City. 
Nutkiewicz et al. [104] propose a network-based machine learning 
model to learn the hidden energy connections and interdependencies 
between buildings at multiple scales (e.g., individual building scale, 
community scale, and urban scale), tested for US commercial buildings. 
Papadopoulos and Kontokosta [110] use a gradient tree boosting 
method to develop a building energy performance grading method; this 
method has shown improved performance over linear models in pre
dicting hourly and annual building energy use at the urban scale. 
Finally, Al Tarhuni et al. [5] use random forest and deep learning neural 
network approaches to predict the monthly natural gas consumption of 
hundreds of university-owned student residences in the U.S. Midwest 
from readily accessible building geometry, energy system characteris
tics, and energy consumption data. 

2.1.4. Q4: bottom-up/white-box 
Various forms of bottom-up/white-box models have been expanded 

over the last decade. This class of models simulates the physical rela
tionship of processes at the building or end-use level. In the new 

classification, we note advances in this area afforded by high- 
performance and cloud computing along with simulation-based 
techniques. 

2.1.4.1. End-use distribution. This approach models the distribution of 
energy demand per end-use or appliance type to calculate total end-use 
or appliance energy consumption at scale – generally without account
ing for interactions between end-uses. Standalone end-use distribution 
models are uncommon in the existing literature, as these models are 
often combined with other modeling techniques to form hybrid ap
proaches. The U.S. RECS and CBECS surveys rely on end-use distribution 
models to apportion whole building residential and commercial building 
energy use collected from billing data across contributing energy end 
uses [152,153]. Engineering estimates are made of the expected con
sumption of each end use, and these estimates are entered as inputs to 
regressions with measured total building energy use as the dependent 
variable, to calibrate the end use attributions. Reyna and Chester [119] 
utilize appliance distribution modeling combined with detailed 
physics-simulation of the thermal envelope to project residential 
building demand under different climate change scenarios in southern 
California. Broin et al. [18] pair exogenously derived assumptions about 
annual changes in energy carrier mixes, improvements in appliance ef
ficiency, and construction rates with an end use-disaggregated model of 
energy demand in EU residential and service buildings, estimating total 
useful energy demand in new and existing vintages of these building 
types across a multi-year time horizon. 

2.1.4.2. Agent-based models. Agent-based models (ABMs) represent 
causality at the individual building or district level, constructing stock- 
level building energy use outcomes in a bottom-up manner. ABMs use 
software representations of individual buildings and/or decision-maker 
agents that have heterogeneous attributes as well as rules for interacting 
with other agents and their physical or economic environments. 
Aggregate stock and energy outcomes emerge from individual-level 
behaviors – that is, macro-level outcomes are determined by the 
micro-motives of agents with endogenous behavior rules. In many ways, 
agent-based models are the bottom-up analogue to top-down system 
dynamics models; like system dynamics, agent-based techniques have 
not been highlighted in previous classifications. 

ABMs have gained in popularity across many applications, and there 
are several notable examples for the buildings sector. Zhao et al. [165] 
developed the Commercial Buildings Sector Agent-based Model 
(CoBAM). CoBAM considers U.S. commercial buildings of different types 
and in different climate zones as adaptive agents that are evolving 
internally and interacting with energy efficiency regulations, which in 
turn dictates the evolution of building energy use over time. In another 
study focused on the residential sector, Moglia et al. [93] use an ABM to 
model the uptake of low carbon and energy efficient technologies and 
practices by households, considering both the influence of social net
works and the decision rules of several different agent types that extend 
beyond homeowners. This study adapts the decision-making algorithms 
of an earlier ABM published by Sopha et al. [135], which was used to 
model uptake of energy efficient heating in Norway. Similarly, Nägeli 
et al. [98] develop an ABM of the building stock that uses a decision 
model to simulate building renovation and heating system substitution 
decisions of building owners coupled with a physics-based model to 
simulate the resulting energy demand over time. Azar et al. [10] use an 
ABM framework to calculate the thermal comfort and energy use of 
multiple buildings on a campus in Abu Dhabi. Their model consists of 
three sub-models: people movement, thermal comfort, and energy 
consumption. Abdallah et al. [1] evaluate the impact of a non-intrusive 
energy messaging intervention on energy use in the Belgian residential 
sector using an ABM that represents daily energy-related occupant be
haviors, peer pressure effects on energy use, and the effects of messaging 
interventions. 
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2.1.4.3. Physics-simulation. Physics-simulation models are a new cate
gory in this classification that encompasses both the archetype modeling 
technique of previous classifications and emerging geo-spatial models, 
recognizing the common reliance of both on physics-based simulations 
of whole building energy use. Archetype modeling (also referred to as 
"prototype" modeling) is a well-established physics-based approach that 
simulates the energy performance of a single building or collection of 
buildings that represents a larger segment of the building stock; results 
can be scaled up to represent total sector energy use in a defined 
geographic area. Pure archetype approaches are plentiful, including 
ResStock [100] and the Tabula project [11], along with similar models 
compiled for the UK in Ref. [65], for Germany in Ref. [136] and 
worldwide in Ref. [87]. Recent advances in computing and data have 
allowed improvement of the traditional, single-building archetype 
approach to include modeling of hundreds or thousands of representa
tive buildings (e.g., ResStock), sometimes even modeling every indi
vidual building in a given geographic area (e.g., ECCABS [86]).4 As 
such, the methodologies used to generate the building archetypes may 
be diverse, including artificial reference buildings [88,91], statistically 
sampled reference buildings [87], synthetic buildings [97,98], or 
data-driven approaches [6,139]. 

Geospatial modeling, which uses building energy simulation in 
combination with spatial representation and modeling in geographic 
information systems (GIS), is a rapidly developing physics-modeling 
approach that holds promise for generating information required for 
energy and emissions-related policy making and planning by actors such 
as municipalities and utilities already using GIS-based decision support. 
In this approach, geodatabases are developed that link building attri
butes and simulated energy use to common geographical references such 
as parcels or building footprints. Commonly, archetype-based energy 
simulation is performed using software such as EnergyPlus for repre
sentative buildings (e.g., CityBES [59]). Results are applied to actual 
buildings corresponding to the archetype in the stock – in some cases 
using actual building geometries (e.g., Ref. [150]). Less commonly, 
buildings are simulated individually (e.g., AutoBEM [101]). 

Multi-module models that integrate more than one of the bottom-up/ 
white-box approaches above typically focus on electricity use, distrib
uted renewable energy and other demand/supply interactions. For 
instance, Sandels et al. [127] forecasts electricity load profiles hourly for 
a population of Swedish households living in detached houses with a 
model constructed of three separate modules: appliance usage, domestic 
hot water, and space heating. The latter module represents the ther
modynamic aspects of the buildings, weather dynamics, and the heat 
loss output from the aforementioned modules. Subsequently, a use case 
for a neighborhood of detached houses in Sweden is simulated using a 
Monte Carlo approach. Similar approaches are used by Nyholm et al. 
[105], where heating demand estimates from the ECCABS model are 
supplemented with hourly profiles for electrical uses, using a statisti
cally sampled description of Swedish households with electrical heating. 
This approach is further developed into the EBUC model in Ref. [122], 
which adds a district heating (DH) module, and in the MOSAIC method 
[67], which uses a bottom-up simulation approach to determine current 
and future consumption and production load curves for an area, cali
brating estimates by comparing simulated load curves with 
observations. 

2.1.5. Multiple quadrants: hybrid models 
In practice, many models use mixed approaches that cross the 

quadrants of Fig. 2 and thus fall into the hybrid region shown in between 
the quadrants. 

Examples of building stock energy models with hybrid elements are 

prevalent in recent years. For example, NEMS, an integrated multi- 
sector energy modeling framework developed by the US EIA, uses a 
technological-econometric approach (Q1) to develop a long-term fore
cast of growth in the building and technology stock, which is combined 
with bottom-up appliance distribution models (Q4) to estimate the en
ergy use intensity of new and existing building stock vintages [149,161]. 
Scout [71], a buildings sector-specific US model that draws its baseline 
energy use scenario from NEMS, adopts the same Q1/Q4 modeling 
approach. In the Canadian CHREM model, machine learning (Q3) is 
used to predict occupant–driven domestic hot water and lighting energy 
use, while an archetype model (Q4) is used to predict space heating and 
cooling energy use [142]. gTech [90], another Canadian model, merges 
the capabilities of the previously developed CIMS hybrid 
energy-economy model (Q1/Q4) [63] with other top-down modeling 
approaches. Sandberg et al. [126] use a hybrid model to simulate the 
long-term housing stock energy use in Norway, using technological (Q1) 
and system dynamics (Q2) techniques to simulate the development of 
the stock and an archetype approach (Q4) to estimate demand. Collor
icchio [26] adds an econometric component (Q1) to Sandberg et al.’s 
housing stock model (Q2), applying the hybrid model to a case study of 
the residential sector in Italy. 

Prominent multi-sector energy system models such as MARKAL and 
TIMES similarly combine bottom-up functions for disaggregated energy 
demand (Q3) with top-down representations of macro-economic effects 
on the energy system (Q1) [80,81]. TIMES has been adapted for use 
across several countries in recent years, sometimes to investigate energy 
use in the buildings sector. For example, using the Global TIMES model, 
Wang et al. [159] simulate the transformation pathways of the global 
energy system under 2-degree and 1.5-degree climate targets, analyzing 
the features and challenges of building sector transition pathways in 14 
high, middle, and low income regions. Seljom et al. [132] use a sto
chastic TIMES model with an explicit representation of uncertainty in 
the electricity supply and building heating demand to demonstrate that 
the Scandinavian energy system is capable of integrating a large amount 
of zero-energy buildings with intermittent PV production. Cayla and 
Maïzi [23] develop a TIMES-Households model that represents house
hold daily energy consumption and equipment purchasing behavior 
with a focus on the French residential building and transport sectors. Shi 
et al. [133] use China TIMES to model the future energy consumption 
and carbon emissions in building sector and find that, including 
renewable energy used in buildings, China’s building sector can reach a 
relatively low-carbon future with more consumption of low- and 
non-carbon fuels. In general, demand sectors in TIMES models – 
including energy use in buildings – have often been handled with a 
limited degree of detail [132]. This can be problematic since a too coarse 
description of energy demand may lead to unrealistic results, with small 
price changes leading either to no impact or sudden technological 
changes [23]. Furthermore, the benefits of energy savings on the wider 
economy [72] and behavioral preferences or “rebound” effects [128] are 
typically disregarded. 

Many of the above hybrid models rely more heavily on one of the 
classification quadrants from Fig. 2 than others – TIMES, for example, is 
a primarily bottom-up framework that ”reaches up” to capture certain 
effects of the larger economy on the energy system [80]. Making the 
classification quadrants and the conceptual differences across them 
explicit in the proposed scheme mitigates the loss of information that 
would result from simply adding a hybrid branch to the hierarchical 
organizations of existing classifications. 

2.2. Additional model dimensions 

Given the increasing sophistication of building stock energy models, 
the high-level classification quadrants and layers of Fig. 2 may be 
insufficient to communicate important contextual details about the 
chosen modeling approach. Accordingly, we propose that a model’s 
treatment of at least four additional dimensions should be described in 

4 This advanced kind of archetype model is sometimes labeled urban-scale 
building energy modeling (UBEM) in previous literature [116], although the 
approach can be applied to other land use types besides urban land uses. 
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parallel with its mapping to the high-level classification quadrants of 
Fig. 2; these additional dimensions are described below. 

2.2.1. System boundaries 
In building stock energy modeling, the collection of buildings studied 

can be conceptualized as a system that is bounded in time and space in a 
manner consistent with principle modeling questions and applications. 
System boundaries are identified at the interface between the entire 
modeled system and the external environment, as well as at the interface 
(s) between modeled sub-systems. (Fig. 3). Choosing and communi
cating appropriate boundaries for the modeled system and sub-systems 
represented by a building stock energy model is critical to ensuring the 
interpretability of model outputs. Here we present further consider
ations regarding the definition of a building stock energy model’s spatio- 
temporal scope, as well as other aspects concerning a model’s overall 
extent and sub-system boundaries. 

The spatial scope of a model is the geographical area covered in the 
study. Spatial scope could be a given neighborhood (e.g. Cuerda et al.; 
Sartori et al. [28,131]), city (e.g. Ouyang et al. [108]), region (e.g. 
Galante et al.; Reyna and Chester [48,119], country (e.g. Mata et al.; 
Sandberg et al.; Nägeli et al. [89,97,126]) or countries (e.g. 
Urge-Vorsatz et al.; Building Performance Institute Europe (BPIE); 
Vásquez et al.; Mata et al. [20,89,151,157]). Combinations are not un
usual – e.g., Hargreaves et al. [56] integrate regional and urban [55] 
modeling with the DECM model at the building scale to forecast how 
spatial planning policies would affect the suitability of retrofitting and 
decentralized supply and how this would vary between area types. 

The temporal scope of a model is the year(s) or time period under 
study. Static models commonly describe the energy use in a specific year 
(e.g. Cuerda et al. [28]), whereas long-term dynamic models may 
describe the development over long time periods up to 50 or even 100 
years (e.g. Sandberg et al.; Berardi [13,125]). Other models serve as an 
archival repository of historical consumption data and are continually 
updated [111]. The temporal scope may therefore cover both historical 
and future development of the modeled building energy system. 

The system boundaries of a building stock energy model may be 
defined by more than spatio-temporal considerations. Building stock 
energy models are often used as part of a larger, multi-sectorial 
modeling frameworks such as the partial-equilibrium NEMS [149] and 
MARKAL/TIMES models [80,81] and general equilibrium Integrated 
Assessment Models [35,49,69,74,156]. Within the buildings sector 
focus, model application may also be limited to a subset of the building 
stock – e.g., residential (Csoknyai et al. [27]), non-residential building 
stock (Lindberg et al. [78]), or the public housing stock (Gagliano et al. 
[47]). Depending on the desired outcome, specific energy end uses 
might be targeted in the analysis. Some studies focus on operational 
energy use only (e.g., heating, cooling, domestic hot water), while others 
adopt a life cycle perspective and therefore include other phases of en
ergy use and emissions such as manufacturing, transportation, con
struction and demolition in the analysis. 

In addition to addressing these considerations about a model’s 
overall system boundary, modelers should describe any subsystems 
within the model and the boundaries that determine their spheres of 
influence. Typical subsystems represented in building energy stock 
models include energy demand, occupants, physical building charac
teristics and systems, and environmental context, as suggested by the 
modeling sub-layers shown in Fig. 2. Outdoor conditions such as 
weather are usually treated as inputs to the model, although some parts 
such as detailed solar radiation and local wind pressure modeling could 
be included as separate subsystems. Extended models may include 
representations of the electric grid, transportation systems, and macro- 
and micro-economic processes, among others. 

2.2.2. Spatio-temporal resolution 
The spatio-temporal resolution of a building stock energy model is 

the level of disaggregation with which key model information and 

results are represented. Each model has a fundamental unit of obser
vation at which calculations are done, across both space (e.g., ‘a house’, 
‘room-based’, ‘meter-based,’ etc.) and time (e.g. hourly, 15-min., 
annual). While a system boundary represents the highest geographical 
or temporal aggregation of a model and therefore serves as an upper 
limit on a model’s spatio-temporal resolution, the model’s unit of 
observation is the lower limit of its spatio-temporal resolution. 

Many building stock energy models study the energy demand within 
a given spatial boundary without any details about the location or dis
tribution of the buildings within the geographical area. The spatial 
resolution is therefore equal to that entire area, even though the unit of 
observation might be a single dwelling. Other models have a high spatial 
resolution and tie building energy use to specific locations – e.g., 
through the use of geographical information systems (GIS). The geo
coded model results are then commonly presented in maps which adds 
important additional information about the distribution of the energy 
use (e.g. Mastrucci et al.; Stephan and Athanassiadis; Möller et al. [84, 
94,138]). Where multiple data layers are incorporated, each layer may 
have a different spatial resolution (e.g., census tract, zip code) and 
therefore the analytical methods used to map these layers to a common 
spatial unit is an important model attribute. 

The temporal resolution of building stock energy models concerns 
the time step that is used to generate results. In the studies previously 
mentioned with longer temporal scopes, energy simulations are typi
cally carried out per year (e.g., Giraudet et al. [51]). However, studies 
also demonstrate higher time resolutions (e.g., per minute or hour as in 
Sartori et al.; Reyna and Chester; Mata et al. [87,119,131]). A model’s 
temporal resolution determines the type of questions that it can answer – 
for example, an hourly resolution is needed to investigate demand-side 
energy flexibility strategies, as clear diurnal variations occur in building 
loads; a monthly resolution is relevant for the study of total heating and 
cooling demand; and an annual resolution is appropriate for studying 
building renovations. 

2.2.3. Dynamics 
Treatment of dynamics in building stock energy models can be 

described along the lines of the three supporting variable layers of Fig. 2: 
1) building usage/occupant behavior, 2) building stock, and 3) context/ 
environment. In practice, these variables may be tightly connected in 
the model implementation (e.g., building stock dynamics are affected by 
changes in the model context). 

Occupant/building use dynamics include the number of occupants (e. 
g., evolution of family composition, number of visitors on the premises, 
aging, typical occupant interactions), occupants’ energy-related be
haviors over time (e.g., adjustment of thermostat set points and other 
controls, movement to and from different spaces), and changes in 
appliance ownership trends (e.g., type of HVAC equipment, number of 
TVs, etc.). For multi-family or commercial buildings with centralized 
control systems, operator decision-making would also fall into this 
category of dynamics. 

Building stock dynamics refer to changes in the stock such as building 
demolition, renovation, and new construction, as well as the effect this 
has on the building stock composition, installed equipment, and 
resulting energy and environmental impacts. Changes to the building 
stock may be represented using both static and dynamic approaches 
(Fig. 4) [85]. Static models assess building stocks at a defined moment in 
time (e.g., for a single year). Such point-in-time snapshots may be 
assessed in a status quo assessment or a comparative assessment, where the 
latter compares the current state with a hypothetical future state (e.g., 
after the implementation of certain energy efficiency measures). In 
contrast, dynamic models capture the evolution of building stocks and 
their energy use over time by modeling processes such as new con
struction, demolition, retrofits and replacement of technologies. Such 
analyses can be focused on historic development (ex-post), on fore
casting future development (ex-ante) or a combination of both. 

Context/environment dynamics concern changes in the energy system 
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that result in (for example) altered greenhouse gas emission factors (e.g. 
changing electric generation mix), changes in energy prices, population 
growth, structural changes in the economy (e.g. growth of certain eco
nomic sectors) or the impact of climate change on building energy de
mand – e.g., via rising temperatures and day-to-day weather conditions. 

Transparent descriptions of how each of these types of dynamics is 
handled in building stock energy models are crucial for assessing the 
quality of model outputs. For example, as described in Sartori et al. 
[130], it is often the case that policy roadmaps and other studies use 
time-resolved inputs on energy and emission intensities, but represent 
changes in the building stock using fixed rates for construction, demo
lition and renovation, which may be overly simplistic. Alternatively, 
renovation rates may be assumed to increase rapidly in order to reach 
stock-level energy efficiency goals. Sandberg et al. [125] demonstrate 
how unrealistic assumptions about renovation dynamics can result in 
model outputs that overstate future energy savings potential. 

2.2.4. Quality assurance 
It is essential to understand the limitations of a building stock energy 

model’s predictive power. No model can be a perfect representation of 
the system it aims to emulate, and all models inevitably contain un
certainty [114] which should be quantified as part of the model quality 
assurance process. Uncertainty can be defined as “any deviation from 
the unachievable ideal of completely deterministic knowledge of the 
relevant system” [158]. It is to be expected that as the systems being 
modeled increase in scale and complexity, the uncertainty in the model 
will also increase. Consequently, it is inevitable that building stock 

energy models will contain a considerable number of uncertainties. 
While some applications of building stock energy models, such as in 
early design, actively seek a range of possible options, it is common to 
see building stock energy model outputs expressed as a single value 
[24]. Such point values may yield misleading impressions about the 
certainty of model insights when used to support energy policy 
decisions. 

In the literature, several different classification schemes focused 
specifically on model uncertainty have been introduced [15,106], but a 
general consensus in terms of uncertainty classification and related 
terminology does not appear to exist [115]. Although there is a lack of 
agreement on the detailed categorization of sources of uncertainty, a 
review of 20 existing uncertainty classification schemes highlighted a 
broad pattern with sources of uncertainty being grouped according to 
whether they related to model inputs, the model itself or model outputs 
(Fig. 5). 

A review of the treatment of uncertainty in the literature relating to 
large scale building energy models undertaken by Fennell et al. [40] 
concluded that Uncertainty Analysis (UA) and Sensitivity Analysis (SA) 
are not common practice in building-stock energy modeling and that if 
UA and SA are performed, only a few parameters are assessed and 
methodologies are not standardized. In addition, although the literature 
suggests that model uncertainties are likely to be a significant source of 
overall uncertainty, the review did not identify any studies which 
addressed this source of uncertainty. 

Parallel Annex 70 work is underway to address the lack of evidence 
in the published literature on the treatment of uncertainty in building 
stock energy models. A wide range of research teams are participating in 
this work with a diverse range of modeling approaches. The initial phase 
of the work is focused on input uncertainty. Each model will be evalu
ated stochastically based on shared sets of uncertain inputs. A range of 
different sensitivity analysis techniques will be applied to each model to 
explore how model attributes such as geographic scale and degree of 
aggregation affect the performance of different techniques. 

Finally, we note that model validation is an additional aspect of 
quality assurance, in which model outputs are compared to measured 
values. The review undertaken by Reinhart and Davila [116] suggests 
that when aggregated city-scale building energy use data are used for 
validation, individual building model errors tend to average out and 
overall errors are in the range 7%–21% for heating loads and 1–19% for 
total energy use intensity. However, simulation errors may be much 
higher for individual buildings in the stock, which is not reflected in the 
aggregate validation statistics. In addition, Reddy et al. [113] highlight 
the high dimensionality of many classes building stock energy models, 
underscoring that small validation error only indicates that a local 
minimum has been achieved, and that model accuracy is not guaranteed 
through aggregate validation alone. Validating against multiple external 
data sources can potentially improve confidence in model accuracy, but 
this is not always possible. Moreover, for building stock energy models 

Fig. 3. Relationship between the modeled system and its environment; the overall system boundary is represented as a conceptual line between the two (left). 
Interrelationship between two subsystems within a larger system, with a boundary defined at the interface between the two subsystems (right) [124]. 

Fig. 4. Approaches for representing changes to the building stock may be static 
(assessing stocks at a specific moment in time) or dynamic (capturing the 
evolution of building stocks over time); each approach is suitable for different 
types of modeling assessments. 
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that project out into future years, validation data will not be available at 
all to compare model outputs against. Complementary model uncer
tainty assessments can help address these shortcomings. 

3. Discussion 

The model classification approach presented in this paper provides a 
formal framework for comprehensively surveying, assessing, and 
demonstrating use cases for the wide range of building stock energy 
modeling approaches that have been published in recent years, as well 
as those that will be published in the years to come. At a conceptual 
level, the classification quadrants introduced in Fig. 2 encourage quick 
comparisons across building stock energy models, including those that 
apply to different regions and building stocks of interest. Such com
parisons support stronger international collaborations around building 
stock energy modeling, which are needed to find pathways for long-term 
reductions in building energy use and emissions that can contribute 
substantially to global climate change mitigation efforts. At the same 
time, this paper’s classification scheme provides avenues for commu
nicating richer technical information about a model, by including sup
porting modeling layers in the high-level classification structure 
(buildings, people, environment) and by encouraging modelers to 
describe their handling of additional modeling dimensions that are not 
captured by the high-level structure. 

Within Annex 70, the new classification scheme is being used to 
generate metadata for organizing models in an online repository. Models 
in the Annex 70 repository will be summarized in terms of the following 
attributes:  

– general purpose and application,  
– model classification quadrant (top-down/bottom-up, white-box/ 

black-box per Fig. 2),  
– modeling technique (system dynamics, statistical, machine learning, 

archetype, etc. per Fig. 2),  
– inclusion of additional layers (buildings, people, environment)  
– treatment of additional dimensions (system boundaries, spatio- 

temporal resolution, dynamics, and uncertainty), and  
– accessibility of the model and supporting data sources. 

Table 2 shows examples of how key models from each of the Annex’s 
participating member countries are being described in terms of high- 
level attributes. 

3.1. Challenges for building stock energy model classification and 
complementary efforts 

The large number of new building stock energy models that have 
been published over the last decade collectively represent a variety of 
modeling methods and outcomes. While the proposed classification 
framework establishes a common language by which researchers may 
effectively communicate such models, we acknowledge that no classi
fication scheme can list or fully characterize all possible techniques for 
modeling building stock energy use. Indeed, this was not the aim of our 
effort; rather, we provide a general, multidimensional, and extensible 
framework onto which particular techniques or combinations of tech
niques may be mapped, even if these techniques are not explicitly called 
out by the classification diagram in Fig. 2. As the research landscape 
around building stock energy modeling continues to change, we antic
ipate the need to revise our classification diagram accordingly, much as 
we have adapted elements of existing classifications published over the 
last decade. 

Moreover, while the classification scheme presented herein is 
intended to facilitate quick model comparison and assessment, it is not 
designed to yield deeper insights into a model’s design and execution 
that are needed to accurately reproduce its use across the research 
community. Mapping between research question and modeling 
approach is complex and informed as much by practical considerations 
of data availability, expertise of the modeling team, and access to 
computing resources as by methodological drivers. Additional details 
will be needed on overall model objectives (e.g., simulation vs. opti
mization vs. accounting), model licensing and usage rights, model 
analysis components and sub-components, guidance on running the 
model, and a model’s input and output data structures, among other 
items. To address this limitation on the classification scheme’s appli
cation, IEA-EBC Annex 70 is developing a complementary reporting 
protocol for building energy stock modeling. This reporting protocol is 
distinct from the classification scheme in its stronger emphasis on 
capturing the technical details needed to fully understand how a model 
works, but draws upon the classification framework to establish model 
metadata - much as the Annex 70 model repository is doing. Other fields 
have successfully deployed reporting protocols,notably health care [12], 
and the intention is to have modelers use the protocol to frame any 
publication that presents a building stock energy model, enabling its 

Fig. 5. Sources of model uncertainty identified in existing uncertainty classification schemes. Sources of uncertainty may be grouped by whether they relate to model 
inputs, the model itself, or model outputs. 
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effective use outside of the context for which it was developed.5 

4. Conclusion 

This paper introduced a new framework for classifying models of 
building stock energy use at the urban, regional, and national scales. The 
classification scheme, which was developed as part of IEA-EBC Annex 
70, builds upon previous approaches for classifying building stock en
ergy models while addressing the need to update these approaches, 
given the availability of richer datasets on the building stock, expanded 
computational power, and the advent of modeling techniques that take 
advantage of these resources. Accordingly, the updated classification 
scheme accounts for newer modeling techniques, establishes a more 
flexible high-level classification structure, and accounts for additional 
model dimensions that are not captured by this high-level model clas
sification exercise. Specifically, the scheme uses a multi-layer quadrant 
structure to classify modeling techniques based on their design (top- 

down or bottom-up) and degree of transparency (black-box or white- 
box), also accommodating hybrid modeling techniques. We provided 
guidance on the description of four additional model dimensions – 
system boundaries, geographic and spatial resolution, dynamics, and 
uncertainty – alongside the high-level quadrant structure and modeling 
layers. A selection of existing literature studies was summarized that 
exemplify the relevance of the high-level classification elements and 
additional model dimensions to the building stock energy modeling 
field. We concluded by discussing the practical utility of the classifica
tion scheme in promoting more effective sharing and assessment of 
models across the international research community, including the use 
of the scheme to develop an online model registry and reporting protocol 
for Annex 70. 
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Table 2 
Sample mapping of building stock energy models from IEA-EBC Annex 70 member countries to this paper’s proposed model classification scheme.  

Country Model 
Name 

Model Use Model Classification Quadrant Additional Details 

Belgium Delghust 
Model 

Assessment of the effect of energy saving measures in 
terms of reducing energy consumption in relation to 
costs in the residential sector 

Q4 physics-simulation Model documentation [29, 
30], and application [16] 

Canada E3MC A macroeconomic model used to develop projections for 
Canada’s National Communication and Biennial Reports 
to the UNFCCC and Canada’s Emissions Trends reports 

Hybrid: Q1 econometric to simulate macro-economic 
trends and Q2 system dynamics to simulate energy 
demand 

Model documentation [34, 
143] and application [53] 

CityInSight Assessment of energy, greenhouse gas emissions and 
financial impacts of changes in land use, building type, 
building code, fuel mix, equipment, renewables, district 
energy, and behavior to support municipal energy and 
emissions planning 

Hybrid: Q2 system-dynamics to simulate building stock 
evolution and Q4 physics- simulation to simulate 
energy demand per unit stock 

Model summary [140] 

Netherlands Vesta MAIS Assessment of the effect of energy saving measures in 
terms of reducing CO2 emissions, energy consumption, 
investment costs and energy costs 

Q4 physics-simulation Model documentation [42], 
GitHub repository [155], and 
application [154] 

Assessment of the effect of changes in heat supply and 
policy instruments including taxes, and subsidies 

Norway RE-BUILDS Assessment of the long-term development of the 
Norwegian residential building stock, including its stock 
dynamics and renewal in terms of new construction, 
renovation and demolition. 

Hybrid: Q1 technological to estimate the total dwelling 
stock size, Q2 system dynamics to simulate stock 
dynamics and Q4 physics-simulation to estimate the 
energy demand per building archetype across the 
simulated stock. 

Model documentation [126, 
130], and application [125, 
126] 

Assessment of long-term development in energy demand 
in the stock due to different development paths in 
various scenarios 

Sweden ECCABS Assessment of potentials and costs for energy savings 
and CO2 emissions reductions of the long-term 
transformation of a building stock 

Q4 physics simulation building-specific calculation of 
energy savings, and agent-based market share of 
technologies and constrained investment and retrofit 
rates 

Model documentation [87], 
and application [86,89] 

Switzerland ABBSM Assessment of the dynamics of national building stocks 
and its energy- and climate-impact over time. In 
particular how building ownerÂ’s decisions to retrofit 
the building envelope and replace heating systems under 
different policy interventions affects this development. 

Q4 physics-simulation to simulate energy demand, and 
agent-based to model building stock dynamics 

Model documentation and 
application [98,102,103] 

United 
Kingdom 

SimStock Assessment of the effects of different policy choices on 
city-level energy consumption including peak demands. 
Heat exposure can also be evaluated. 

Q4 physics-simulation Underlying philosophy [25] 

United States Scout Assessment of national energy, cost, and CO2 emissions 
impacts of U.S. building energy efficiency and flexibility 
to assist in R&D program design 

Hybrid: Q1 technological- econometric to model 
building and technology stock size and dynamics and 
Q4 end-use distribution to model energy use per unit 
stock 

Model documentation [148], 
GitHub repository [57], and 
application [71] 

ResStock Assessment of the impact of energy efficiency measures 
in the residential sector, providing detailed information 
on energy time-series, cost-effectiveness, technology, 
building type, and location. 

Q4 physics-simulation Model documentation [100], 
GitHub repository [99], and 
application [162]  

5 In the absence of such reporting guidance, modeling techniques that fall in 
principle into the white-box quadrants of our classification may be perceived in 
practice to be black-box due to poor understanding of detailed model elements 
among researchers that are not part of the core model development team (due 
to too many equations, disparate input datasets, unclear variable relationships, 
etc.). 
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[135] Sopha BM, Klöckner CA, Hertwich EG. Adoption and diffusion of heating systems 

in Norway: coupling agent-based modeling with empirical research. 
Environmental Innovation and Societal Transitions 2013;8:42–61. 

[136] Soto AM, Jentsch MF. Comparison of prediction models for determining energy 
demand in the residential sector of a country. Energy Build 2016;128:38–55. 

[137] Sousa G, Jones BM, Mirzaei PA, Robinson D. A review and critique of UK housing 
stock energy models, modelling approaches and data sources. Energy Build 2017; 
151:66–80. 

[138] Stephan A, Athanassiadis A. Quantifying and mapping embodied environmental 
requirements of urban building stocks. Build Environ 2017;114:187–202. 
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