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Abstract: We analyze multiple subsidy programs for residential energy efficiency up-
grades from 2010 to 2015 using electricity billing records of more than 11 million
households in Southern California. We find that adopting these upgrades reduces
overall electricity usage by 4%. However, there are significant differences in savings
between upgrades. Pool pump and refrigeration upgrades generate the largest savings
(13% and 6%, respectively). Lighting and HVAC retrofits generate the smallest sav-
ings (less than 1%). Some upgrades lead to concerns of rebound effects, such as dish-
washer and clothes washer upgrades, and building envelope upgrades. Program im-
pact varies by time of the year and building type. Furthermore, we find that energy
savings are inconsistent with the engineering estimates. These results indicate that
policy makers should consider the allocation of program funding not simply based
on engineering projections but also based on measured electricity consumption such
as those described in this study.
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ENERGY EFFICIENCY (EE) is one of the main policy tools for addressing climate change.
Former US Secretary of Energy Steven Chu once said, “If I were emperor of the world,
I would put the pedal to the floor on energy efficiency and conservation for the next
decade” (Guardian 2009). EE subsidies are politically attractive because of their ability
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to reduce energy usage as well as save money for consumers and governments. As a re-
sult, governments around the world are developing policies to encourage energy effi-
ciency. California, for example, set an ambitious target of reducing its greenhouse gas
emissions to 40% below the 1990 level by 2030 (SB-32 2016). One critical pathway
identified to achieve this goal is to subsidize energy efficiency upgrades (CPUC 2016).
As such, the state of California spends about $1 billion annually on residential energy
efficiency upgrade programs.

There is, however, inconclusive empirical evidence about the effectiveness of these
programs. Most claims regarding savings resulting from energy efficiency upgrades,
such as the famous McKinsey’s cost curve, are based on engineering modeling projec-
tions (McKinsey and Company 2009). Such projections usually ignore the behavioral
aspects of energy consumption. For example, Chen et al. (2015) showed that house-
holds differ significantly in how they use the same model of appliances in similar apart-
ments. Ignoring these behavioral differences in consumption might lead to an errone-
ous estimate of the energy savings. In fact, the recent empirical evidence of EE programs
using experimental or quasi-experimental designs suggests that these programs seldom
deliver the savings predicted by engineering estimates (Davis et al. 2014; Graff Zivin
and Novan 2016; Allcott and Greenstone 2017; Liang et al. 2017; Fowlie et al. 2018).

Scholars have argued that there is a need for additional empirical research to identify
differing program impacts as a result of program design, household type, and building
characteristics (Allcott and Greenstone 2012). However, the difficulty of accessing en-
ergy consumption data and the low take-up rates of EE programs hamper such empir-
ical analyses. Widespread privacy laws limit access to high-resolution energy data by
building, and large-scale evaluations using credible quasi-experimental design are still
rare (Mathew et al. 2015; Pincetl et al. 2016). In addition, the low take-up of EE pro-
grams is a common challenge for undertaking robust analyses. For example, Fowlie et al.
(2018) conducted the nation’s largest randomized experiment to encourage households
to adopt a free energy retrofit program inMichigan. The take-up rate was only 6% despite
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ample resources spent for recruitment. Overall, estimates of savings in EE program im-
pact evaluations often rely on model simulations and extrapolations and rarely incorpo-
rate credible pre and post energy consumption data (Qiu and Patwardhan 2018).

Against this background, we have compiled, to our knowledge, the most compre-
hensive micro data set to evaluate the effectiveness of various residential EE upgrades.
First, Southern California Edison (SCE) granted us access to information on all their
residential EE upgrade programs from 2010 to 2015, including records of all financial
incentives claimed by SCE customers as part of these programs. Second, we obtained
meter-based monthly electricity consumption data for approximately 11million house-
holds in SCE’s territory from 2010 to 2014. Data were accessed through the LA En-
ergy Atlas, a relational database that tracks energy usage across LA County as well as
building characteristics such as vintage and square footage (Pincetl and LA Energy At-
las Development Team 2015). The data allow us to address the following research
questions: (1) How effective are residential EE upgrades (appliance and equipment up-
grades) at saving energy? (2) Does effectiveness vary across income groups and building
characteristics? (3) What is the difference between engineering estimates of potential
energy savings and actual measured energy savings among different upgrades? To eval-
uate the savings of different EE upgrades, we specifically focus on electricity savings, as
this is a very important claim of benefits from energy efficiency programs (Energy Com-
mission and Public Utilities Commission 2005). This allows us to compare our results
with the existing literature on EE programs (Allcott and Mullainathan 2010; Davis
et al. 2014; Asensio and Delmas 2017).

Our study makes two contributions. First, our rich program data allow us to refine
our understanding of the effectiveness of different types of EE upgrades. The paper
adds to the literature using large-scale micro data to evaluate energy efficiency pro-
grams. For example, two prominent studies focus on residential energy efficiency pro-
grams and low-income weatherization programs in Wisconsin and Michigan (Allcott
and Greenstone 2017; Fowlie et al. 2018). Both studies find that energy efficiency pro-
grams are not cost-effective. However, because these studies focus on a single energy
efficiency program (e.g., weatherization),1 and/or a single demographic (e.g., low in-
come), it is unclear whether the ineffectiveness occurs because of the program or be-
cause of household demographics. We believe that we provide the first study compar-
ing numerous EE upgrades using large-scale micro data consumption (e.g., more than
11 million households’ utility billing records) while including building information.
Our extensive coverage of program data allows us not only to compare different types
1. Allcott and Greenstone (2017) focus on two energy efficiency programs in Wisconsin,
which are part of the national Better Building Neighborhood Program (BBNP). The two pro-
grams were targeted at retrofitting residential buildings. The energy consultant first gives a free
audit and then recommend many parts of the needed retrofit to the building, such as attic in-
sulation, air sealing, vaulted ceiling insulation, etc.
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of subsidies, both in terms of technology supported and incentive schemes (such as free
giveaways or cash rebates) but also to control for overlapping EE upgrade impacts (ow-
ing to the fact that EE participants may apply to multiple programs), therefore avoid-
ing overestimation that may result from these overlaps.

Our second contribution is to examine heterogeneous effects by connecting EE up-
grades with building characteristics, such as vintage and square footage. This differs
from previous studies that typically only link account-level electricity information to
census sociodemographics, without including building-level information. Observing
heterogeneous effects of product upgrades is critical to refining funding allocation
and program design. For example, the realized savings of a heating, ventilation, and
air conditioning (HVAC) unit upgrade can be greater in a new and well-insulated
building than in an older building which is not well insulated. Few studies contain in-
formation on building characteristics, and those that do, include insufficient numbers
of observations to conduct a well-powered analysis of heterogeneity. Thus, our large-
scale data analysis contributes to the literature by examining heterogeneous effects with
a higher degree of accuracy. Table A1 (tables A1–A20 are available online) shows how
our approach contributes to the literature by listing the most recent academic research
using micro data to evaluate residential energy efficiency upgrade programs.2 This in-
formation has been crosschecked with the most recent review paper from experts in this
field (Qiu and Patwardhan 2018).3

To evaluate the savings of participation in different EE upgrades (monthly kilowatt-
hours [kWh]), we follow the econometric strategy of prominent research in EE program
evaluation (Davis et al. 2014; Liang et al. 2017).4 Since participation in EE upgrade
programs is voluntary, we implement matching procedures to address self-selection
bias in program participation and then conduct post-matching difference-in-difference
strategy regressions with various fixed effects (household-month and time). First, we
construct a set of households that are similar to our program participants but have
never participated in any of the programs. To achieve this, we use covariate matching
with the Mahalanobis metric on a pool of more than 11 million households, based on
building characteristics geocoded from the assessors’ database and census block group
2. We have compared our study with a substantial amount of relevant literature (Hong et al.
2006; Scheer et al. 2013; Boomhower and Davis 2014; Alberini and Towe 2015; Davis and
Gertler 2015; Adan and Fuerst 2016; Alberini et al. 2016; Aydin et al. 2017; Giraudet et al.
2018; Novan and Smith 2018; Davis et al. 2020; Liddle et al. 2020; Adekanye et al. 2021).

3. However, we do not include information and behavioral programs and other macro or
utility-level analyses as they are very different from our study. Gillingham et al. (2018) provides
a more comprehensive review on energy efficiency. For energy conservation and information
programs review, see Delmas et al. (2013).

4. Note that we do not have a valid instrumental variable or a credible regression disconti-
nuity (RD) design as programs are available to all SCE customers in the SCE service territory.
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data.5 Second, we use panel regression models to estimate the average savings after
matching. We exploit the monthly variation of program participation and use house-
hold-month and time fixed effects to rule out time-invariant unobservable confounding
factors. We also control for time-varying trends at the household level and conduct al-
ternative quasi-experiment design among only participating households. The results
are robust to various model specifications, such as matching on different sets of observ-
ables, matching with and without replacement, matching on location, matching on loca-
tion and past electricity consumption, and so forth.

It is important to note that our data do not allow us to rule out the fact that some
households in the sample might be those who needed a new appliance. In such cases the
subsidies might be encouraging them to purchase a more efficient model than they
would otherwise. Without a clean no-policy scenario data or a randomized control
study, we may overestimate the savings impacts. Nonetheless, we can compare the im-
pact of these energy upgrades on energy consumption.

Our results show that EE product upgrades from 2010 to 2015 reduce overall elec-
tricity usage by 4%. However, the energy savings vary significantly by product type.
While pool pumps and refrigeration upgrades are associated with significant energy
savings (12%–13% and 6%, respectively), HVAC retrofits generate insignificant over-
all savings. Other types of upgrades, such as clothes washers and dishwashers, and
building envelope are associated with zero savings or even some increases in overall
consumption.6

In addition, we find that energy savings are considerably inconsistent with the en-
gineering estimates computed by Southern California Edison, the investor-owned util-
ity that covers most of Southern California and that is responsible for the EE incentive
programs. For example, lighting upgrades achieve only 7% of the engineering esti-
mates;7 and whole house retrofits achieve just 18% of the engineering estimates, while
5. We use exact match on building type (single family, multifamily, condo, etc.), vintage bins,
climate zone, square footage percentile (only for single and multifamily housing), also fuzzy nearest
distance matching on census block group–level variables, such as median income, density, poverty,
white, black, Asian, Hispanic, education, age, percentage of ownership, percentage of occupancy
rate, and also variables at the account level, including, whether homeowner or not, geographic lo-
cation—x-y coordinates, whether the household is registered under CARE/FERA energy discount
programs for low-income households, and whether the household is identified as having a pool or
not.

6. The results for whole house retrofits are less conclusive. In most specifications, whole
house retrofits are associated with increased savings, but in some specifications, they are asso-
ciated with zero to 3 percentage point savings. In the falsification test, it appears that program
participants have already experienced an increased upward trend in electricity consumption, cre-
ating a concern of identification assumption.

7. The estimated coefficients for lighting programs are not significant in our most conserva-
tive specification.
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other upgrades such as those for dishwashers and clothes washers generate zero sav-
ings or even increased energy consumption. However, pool pump upgrades and audits
generate larger savings than the ex ante estimations. This indicates that the bias of
engineering estimates can go both ways, underscoring the importance of conducting
EE evaluations with actual meter or billing-level data.

In terms of the heterogeneity of upgrade effectiveness, we find that the level of the
financial incentives matters. For example, we find larger savings for some of the prod-
ucts with cost sharing (e.g., lighting rebate programs) as compared to products given
away for free (e.g., free LED light bulbs). Cost sharing (< 100% subsidy) is more effec-
tive than free distribution in the case of lighting upgrades as the savings may largely
depend on recipients’ usage behaviors. Indeed, it is possible that free light bulbs are
not installed by households, in contrast with light bulbs purchased through rebates.8

The paper proceeds as follows. Section 1 provides background on energy efficiency
programs. Section 2 presents our data and empirical strategy. Section 3 presents our
main results. Section 4 details heterogeneous estimates. Section 5 presents robustness
checks. Section 6 provides a concluding discussion.

1. PROGRAM BACKGROUND

Our study focuses on all the customer-incentive-based EE programs administered from
2010 to 2015 by Southern California Edison (SCE)—one of the largest utilities in the
United States, providing electricity to more than 14 million people. The weather in
much of this region includes warm, dry summers and mild winters. Due to the lack
of exceptionally cold weather, about 14% of California homes are not heated (EIA
2009). This weather pattern may affect energy savings of more weather-dependent en-
ergy efficiency products such as HVAC, whole house retrofits, and building envelope.9

During the study period, SCE provided financial incentives to customers for up-
grading their home with more energy efficient products, such as lighting, pool pumps,
refrigerators, and other appliances. To obtain the rebate during the program imple-
mentation period, SCE customers needed to upgrade to a more energy efficient product
in their homes and then apply for the rebates by mail or online. For example, to apply
for an appliance upgrade (e.g., HVAC, pool pump, refrigerator) single-family home-
owners could apply for rebates through the Home Energy Efficiency Rebate (HEER)
Program—the largest residential program based on expenditure (CPUC 2015)—and
multifamily owners could apply through the Multifamily Energy Efficiency Rebate
8. However, it is worth noting that this difference between cost sharing and free delivery is
not evident among other programs because of data limitation.

9. We do not account for natural gas consumption, which is an important component when
evaluating weather-dependent energy efficiency upgrades. This limitation may be less of a prob-
lem in our study because the winter is relatively mild in our study region. However, one needs to
be careful when generalizing our results to other regions.
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Program. Other programs provide larger financial incentives for EE upgrades. For ex-
ample, the Comprehensive Mobile Home program focuses on promoting EE technol-
ogies among mobile home owners and provides direct install for lighting and HVAC
upgrade at no charge.

These EE programs include nine types of products based on SCE’s categorization:
appliance upgrade (i.e., dishwasher and clothes washer), consumer electronics, HVAC
retrofit, lighting, pool pumps, refrigeration (i.e., refrigerator and freezer), audits, whole
house retrofit, building envelopes, and others.10 Note that households may claim mul-
tiple incentives to upgrade their homes through various programs. Our estimates,
therefore, provide the average monthly impact (e.g., electricity reduction) of a typical
household that has claimed upgrade rebates within our study period. To be consistent
with SCE’s program approach, we focus our analysis on product categories. Our cate-
gory selection is based on those used by the Database of Energy Efficiency Resources
(DEER). Among those listed, lighting and refrigeration have attracted the largest con-
sumer participation. Table 1 displays the number of SCE households enrolled and the
products covered in the SCE EE programs. We also present the detailed program im-
plementation strategies in appendix B (apps. A–C are available online).

EE programs use different levels and types of financial incentives. For example, some
subsidize a certain percentage of the cost of the product (i.e., rebate), while others pro-
vide the products for free. Programs can also be directed to different types of recipients:
upstream and midstream incentives are given to contractors or distributors, while
downstream incentives are given directly to the end users (households). A full list of
the different levels and types of incentives is shown in table 2.

2. DATA AND EMPIRICAL FRAMEWORK

2.1. Data Description

We combine four data sets to understand the effectiveness of energy efficiency upgrades
among residential households in Southern California. We focus on energy efficiency
upgrade programs where households could claim financial support between 2010 and
2015.11 To evaluate the impact of these EE upgrades on energy usage, we use monthly
electricity consumption measured at the household account level.

Electricity usage and program participation data are extracted from the LA Energy
Atlas, a relational database that enhances understanding of energy usage across LA
10. The term “building envelope” refers to the external elements of the building that enclose
the internal space, including windows, exterior four walls, roof, and the floor above the unheated
basement area.

11. Program-related information (e.g., installation date, rebate amount, etc.) was recorded.
However, we do not analyze programs that do not directly involve end users’ action: for exam-
ple, training and education programs to promote EE upgrade, subsidy programs for developing
new EE technologies and standards, etc.
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County (Pincetl and LA Energy Atlas Development Team 2015).12 Key data for EE
programparticipation are fromboth theCalifornia PublicUtilities Commission (CPUC)
and Southern California Edison (SCE), the regional electricity utility. Building-level
characteristics come from the Los Angeles County Assessor’s property data set. Sociode-
mographic information is from the census database. (See table A2 for more details re-
garding the source and coverage of our data.)

2.1.1. EE Program Data

Program participation data identify residential energy efficiency programs implemented
in SCE service territories during 2010–15.Note that 2015 electricity consumption data
are unavailable to us, so to assess product upgrade impact on electricity savings, we
analyze information only from 2010 to 2014. However, program information from
2015 is useful to prevent us from selecting any future EE participants into our matched
control group.

Each time a household claims a rebate or direct financial support to upgrade their
home, there is a record that documents important information, such as the installation
date, rebate amount, type of product, and predicted energy savings. We use the instal-
lation date to generate an EE upgrade participation variable reflecting the starting
Table 2. Energy Efficiency Upgrade by Type of Subsidies

Product
Upstream/
Midstream

Financial Incentives
(Medium)

Direct
Install

Free/Give-
away (Large)

No. of Subsidy
Claims

Appliance 118 30,082 0 0 30,200
Consumer

electronics 73,077 0 364 0 73,441
HVAC 381 25,597 59,664 0 85,642
Lighting 66,343 337,857 531,422 448,752 1,384,374
Pool pump 6,924 35,482 480 0 42,886
Refrigeration 76 464,673 0 0 464,749
Water heating/

savings kit 0 1,106 8,165 260,894 270,165
Audits 0 224,361 0 76 224,437
Whole house

retrofit 6,872 2,459 0 0 9,331
Building

envelope 0 5,526 0 0 5,526
Other 0 5,896 0 293,012 298,908

Total 153,791 1,133,039 600,096 1,002,734 2,889,659
12. See www
.energyatlas.uc
la.edu.

https://www.energyatlas.ucla.edu


Are Residential Energy Efficiency Upgrades Effective? Chuang, Delmas, and Pincetl 651
month of the upgrade for each household and each product category. All information
tracked after the installation date t is considered part of the “treatment period.” Note
that since we have a short five-year window of data, it is fair to assume that all upgrades
remain within their effective lifespan throughout our study. The other important
variable is the predicted savings. For each claimed incentive for each type of product, we
can calculate the estimated savings based on SCE’s internal methodology.

The EE programparticipation data cover 191 cities (see fig. A1; figs. A1–A5 are avail-
able online).13 Participation comparisons across income categories show higher partic-
ipation rates from the top income quartile (see table A3). The average uptake rate is
8%, while it is 11.6% within the highest income quartile and 5.5% within the lowest
income quartile.OrangeCounty has higher EE adoption rates (12%) than other counties,
while the adoption rates of Los Angeles County and Imperial County are lower than av-
erage (around 6%). Given the vast variation, we opted for a credible quasi-experimental
design to mitigate self-selection bias and best evaluate EE upgrade effectiveness.

2.1.2. Electricity Usage Data

Account-level electricity billing data are available from January 2010 through Decem-
ber 2014 across the SCE service territory. Our data contain more than 11 million
unique accounts with monthly electricity usage data from 2010 to 2014. The panel
data are unbalanced because households may move in and out of a given building, or
even area, during the study period, which means that not all households have a com-
plete record running throughout the entirety of the study period.

The unit of analysis is the combination of the household utility account and the
building. If a household has moved to a new address, even while carrying over the same
utility account, we generate a different ID. This approach accounts for the potential
that the same household may consume electricity differently in different homes due
to building characteristics such as vintage and square footage. Also, most upgrades are
attached to the building and will not be carried over once households move to a new
building. So treated households are no longer considered treated once they move.

2.1.3. Building Characteristics Data

Building characteristics used in this analysis include (1) use type (i.e., single-family
housing, multifamily housing, condominium, etc.), (2) square footage, (3) building vin-
tage, (4) climate zone, (5) energy discount program participation (for low-income
households), (6) whether the house is the owner’s primary residence, (7) whether the
13. Including Irvine, Lancaster, Santa Ana, Palmdale, Valencia, Aliso Viejo, Orange, Ran-
cho Santa Margarita, Corona, Fullerton, Long Beach, Moreno Valley, Lakewood, Newhall,
Costa Mesa, Tustin, Mission Viejo, Los Angeles, Torrance, Saugus, etc. However, the data
do not cover information for LA City, which is served by the Los Angeles Department ofWater
and Power (LADWP), a separate utility.
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household is registered under low-income discount programs, and (8) whether the house-
hold is identified as having a swimming pool. The descriptive analysis of the key variables
is shown in table A2. For LA County, building use type and ownership information
is sourced from the 2016 county assessor office’s parcel database, which is publicly
available on the LA County GIS portal website. For all other counties, information
is from a standardized parcel database created by the Southern California Associa-
tion of Governments (SCAG). Through a multistage geocoding process developed
by the LA Energy Atlas, individual account addresses are associated with parcel
boundaries. This process links each utility account and its associated utility consump-
tion records with the building attribute information available for the various parcel data-
base sources.

2.1.4. Sociodemographic Data

We use US census data to obtain sociodemographic information. The census informa-
tion is taken from the American Communities Survey (ACS) 2006–10 estimated at
the block group level. The variables of interest include median income, population den-
sity, poverty, ethnicity, education, the percentage of homeowners, and occupancy rate.

2.2. Empirical Strategy

We can identify the savings for each product upgrade by comparing the change of elec-
tricity consumption over time between participants and nonparticipants under several
identification assumptions (see details in the identification section). The challenge in
evaluation is that many factors other than energy use may influence whether house-
holds participate in an EE upgrade. In order to rule out factors that may confound
the EE upgrade, we first find a set of households that were similar to our EE product
upgrade participants but who had never claimed any EE upgrade subsidy. We use a
matching method to find this comparison group and based our matching criteria on
variables cited to be important in previous studies such as location, building charac-
teristics, and demographic variables. As recommended by Rubin (2007), we do not
use any outcome variable, such as energy consumption, to construct our control group
so as to retain the objectivity of our design.14 The literature shows that regression mod-
els may perform poorly with small covariate overlap (Dehejia andWahba 1999, 2002;
Glazerman et al. 2003; Alix-Garcia et al. 2015), so this pre-match method aimed to
improve the covariate overlap to reduce bias before running the panel regression models
with various household fixed effects (Dehejia andWahba 1999, 2002; Ho et al. 2007;
Stuart 2010). As expected, our covariates are more balanced after matching (see fig. A2
and matching covariates test results in table 3).
14. Nevertheless, we tried matching on location and matching on location and past con-
sumption pattern as in Davis et al. (2014), and the results are robust.
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We match households that participate in EE upgrades (treated households) in any
year between 2010 and 2015 with households that have never participated in any EE
upgrades using Mahalanobis Distance Matching with replacement.15 This matching
scheme uses the data from over 10 million nonparticipants and finds the nearest neigh-
bors to our treated households based on the following covariates: exact matching for
(1) building type (single-family housing, multifamily housing, condominium, combined
residential), (2) vintage bins (built before 1950, between 1950 and 1978, between 1979
and 1990, and after 1990), (3) square footage bins, (4) climate zone, (5) fuzzy nearest
distance matching for other covariates including owner-/renter-occupied,16 (6) whether
the household participated in any low-income electricity discount program (e.g., Califor-
nia Alternate Rates for Energy [CARE] or Family Electric Rate Assistance [FERA]),
(7) whether the household had a pool,17 and (8) census block group variables, such as
median income, density, poverty, race, education, age, percentage of ownership, and per-
centage of occupancy rate. We also include x-y geographic coordinates to improve our
location matching.18 The idea is to establish an appropriate counterfactual sample of
households that are as similar to our participants as possible but have never participated
in any of the energy efficiency upgrades in our study. Our advantage is to use both so-
ciodemographic and building-level information in selecting our counterfactual group, as
the existing literature uses covariates from sociodemographic information (mostly at the
census block group level) or past electricity usage to find the counterfactual. Based on
table A1, very few studies have building-level information because billing data do not
include building characteristics. This limitation may constrain econometric strategies
given that building characteristics are considered to be more important determinants
in explaining energy efficiency retrofit investment than sociodemographic characteristics
(Trotta 2018).
15. We also tried without replacement and with different cluster level and the results are
similar.

16. Based on property tax records, we can identify those who are the building owners and at
the same time live in that building as their primary residence.

17. Pool ownership information is limited and incomplete. Therefore, for those who do not
have pool information, we impute the missing values that simulate the distribution. We can
treat this process as if we use this extra pool information to improve the matching method with-
out throwing away observations. We also tried matching without this pool ownership informa-
tion, and the result is consistent.

18. Since we use x-y coordinates in matching, some may worry about spillover effect—
nonparticipants who live adjacent to our treated participants may become more energy saving;
for example, they learn more about energy-related knowledge. Nonetheless, this potential spill-
over effect will make our savings impacts underestimated, which means that our identified sav-
ings, if any, is even stronger in the absence of spillover. Also, we use similar matching covariates
but without x-y coordinates, and the results are consistent, indicating small spillover effect.
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After matching, we use panel regression models controlling for household fixed ef-
fects or household-month fixed effects. This approach helps eliminate unobservable
household-level characteristics that do not change over time. Household size, political
affiliation, and environmental attitude are all examples of time-invariant variables that
may affect upgrade participation as well as electricity consumption. The specification
controls for household-month fixed effects, which helps rule out household-specific
unobservable seasonal usage patterns. Finally, we control for time fixed effects for any
unobservable factors that may confound the EE upgrade participation.

In the post-matching estimations, we rely on the difference-in-difference (DID)
technique to identify the product upgrade effectiveness. First, we determine the differ-
ence in electricity use between EE upgrade participants and nonparticipants to account
for the systematic electricity usage difference (first “difference”). Then we calculate an-
other difference to compare electricity usage before and after retrofits for participants
as well as nonparticipants (second “difference”).

To evaluate the overall treatment effects for residential households, we estimate
panel regressions (eq. [1]) with various fixed effects on the pre-matched sample with
the following specification:

ln Energyimtð Þ 5 βEEimt 1 aim 1 gmt 1 εimt, (1)

where EEimt is an indicator variable for identifying household, i switches from zero to
one when that household joined any EE upgrade in monthm year t. We use the month
when households installed the product to determine their treatment status. To under-
stand energy usage, we use ln(Energyimt) which is the natural log of energy usage (in
kilowatt-hours [kWh]) for household i in monthm year t. Because of the large variation
of this variable (e.g., extremely heavy energy users in Beverly Hills), we use a natural
logarithm to smooth the consumption variable at the highest end of the distribution.
This method also eliminates noisy observations that have zero electricity consumption,
as just keeping a refrigerator on will take at least 20 kWh a month. Unfortunately, we
do not include natural gas consumption data, as they are unavailable to us.

Household-month fixed effects (aim) take into account unobservable household
characteristics in a certain month that may affect energy usage as well as the systematic
seasonal pattern of the household’s electricity consumption. These household-month
fixed effects address unobservable time-invariant differences in attributes between
EE upgrade participants and nonparticipants. In this context, “unobservable time-
invariant differences” refer to those characteristics that may affect both EE upgrade par-
ticipation and electricity usage. These include, for example, a person’s environmental
attitudes, household size, political views, or even personal behavioral biases.

We also include month-year time fixed effects (gmt) to control for economic or ad-
ministrative shocks in each time period. As savings impacts may be overstated with
changes in administrative capacities over time, gmt differences out some confounding
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factors such as administrative and economic shocks. It also controls for the fact that
the background technology of various energy efficiency products may simply improve
over time.

To better understand what type of upgrade works better, we further analyze EE
upgrade effectiveness for different types of products. We estimate equation (2):

ln Energyimtð Þ 5 β1EEProduct1imt 1 β2EEProduct2imt ::: aim 1 gmt 1 εimt, (2)

where EEProduct1imt, EEProduct2imt . . . are indicator variables that identify when
household i switches from zero to one as that household upgrades an EE product
(i.e., consumer electronics, HVAC retrofits, lighting, etc.) in monthm year t. Our main
goal is to test the mean change in electricity consumption associated with the EE prod-
uct upgrade (i.e., parameters β1, β2 . . . β10). We are interested in testing the effective-
ness of different end-use products (whether β1 < 0; β2 < 0 . . . β10 < 0). There are
10 primary products delivered with financial incentives, including appliances, consumer
electronics, HVAC, lighting, pool pump, refrigeration, audits, whole house retrofits,
building envelope, and other equipment.

2.3. Identification

Our rich data allow us to control for most of the building covariates identified in the
literature as important influences on the decision of whether or not to adopt EE. In
addition, the large number of fixed effects helps us control for a large number of time-
variant and unobservable confounds. However, it is important to note that even with
our large sample and rich heterogeneous building information, our approach may not
be immune to some forms of bias. Therefore, our main contribution is to examine the
heterogeneous effects of different EE product upgrades. We discuss below some of the
identification challenges of the analysis and how we address them.

The first potential concern is the parallel trend assumption, which requires that in
the absence of treatment, the difference between “treatment” and “control” group is
constant over time.We conduct robustness checks where we control for group-specific
time trend. As the recent literature recommends a move away from relying purely on
traditional parallel trend pretests (Bilinski and Hatfield 2019; Freyaldenhoven et al.
2019; Roth 2019; Rambachan and Roth 2021),19 we also conduct a falsification test
and sensitivity analysis (see discussion in the robustness check section). The results
of these tests are robust for the most effective upgrades—pool pump and refrigeration
(see detailed discussion in the robustness check section).

Second, the decision to upgrade might depend on the type of products. For example,
households may decide to upgrade their dishwasher when it is broken (exogenous tim-
ing), while they may not wait for this natural transition to take on a whole house or
19. The preexisting trends for the most effective products, pool pump and refrigerator, ap-
pear to be parallel (see fig. A2).
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HVAC retrofit project (endogenous timing). In addition, households may choose to
enroll in a whole house retrofitting project when they have an additional household
member who moves into the home or when their employment status changes. We deal
with this concern through robustness checks where we control for extra household spe-
cific time control and use lagged treatment variables (see detailed discussion in the
robustness check section). Moreover, the distinguishable seasonal savings patterns (in
fig. 2) for HVAC and whole house retrofit reassures us that we have captured the im-
pact from EE upgrade rather than this other confounding household event (e.g., em-
ployment change).

Third, one might be concerned that savings impacts are not completely “additional”
even when the upgrade participation timing is exogenous (e.g., broken appliances). In
the data, we can only observe the product upgrades covered by the program subsidy,
but we cannot observe the product upgrades in the absence of these programs. House-
holds could have purchased the very same EE upgrade without the subsidy, resulting in
overestimation of our savings effects. In this case, the savings associated with product
upgrades are an upper bound, since we cannot attribute all the savings impacts to the
programs. Yet if we find that EE upgrades are ineffective (which happens in many of
our products), the overestimation would make our result even stronger.

Despite these limitations, our study still sheds lights on sensible comparison among
different EE technologies, type of subsidies, and building characteristics. Therefore,
one of our contributions is to examine the heterogeneous effects of different EE prod-
uct upgrades.

3. MAIN RESULTS

3.1. Summary Statistics

Table 3 shows summary statistics of various characteristics of EE participants and
nonparticipants in our total sample and matched sample. EE Participants constitute
8% of the total sample.20 They are more likely to own their homes, live in newer build-
ings, and reside in areas with lower population densities and higher incomes. Partici-
pation rates are higher among white and Asian populations, and lower among African
American and Hispanic populations. Participants also tend to be from neighborhoods
with more highly educated populations.21 This indicates that participation correlates
with greater access to resources and further justifies our matching method to improve
covariates overlap.

To test covariate balance, we calculate the normalized difference in means between
EE participants and nonparticipants in the whole sample, and between EE participants
and matched nonparticipants (see table 3 and fig. A2). The normalized difference in
20. The adoption rate for any energy efficiency upgrade during our five study years is about
8% (see also table A3).

21. All of these numbers are purely summary statistics without controlling for other covariates.
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means represents the difference in means between the treatment and control groups
divided by the square root of the sum of variances for both treated and control groups.
We calculate the standardized difference of various attributes in order to compare
whether our matching method improves the similarity of the control and treatment
group. This is the most common way to diagnose covariate balance (Rosenbaum and
Rubin 1985; Stuart 2010).

Our matching improves covariate balance in almost every aspect (see fig. A2). Most
covariates have a smaller normalized difference in means except for the Asian popula-
tion and the occupancy rate. With matching, not only has the covariate balance greatly
improved but also all the normalized differences in means are smaller than 0.25 stan-
dard deviations—the suggested rule of thumb in the literature (Rubin 2001; Imbens
and Wooldridge 2009).

3.2. Overall Treatment Effects

Our results show that residential EE upgrade incentives reduce overall electricity usage
by 4%, or 26 kWh per month (see the bottom row in table 4). This is equivalent to
311 kWh of annual savings. Using this figure for 8% participating households of ap-
proximately 15 million SCE customers, we estimate that overall upgrade effectiveness
is equivalent to 75 gigawatt hours in annual savings (311 � 15,000,000 � 8 % /5 5
74,640,000 kWh). This electricity reduction is equivalent to preventing 52,770 tons
of carbon dioxide emissions annually.22 Of course, these numbers are approximate as
they are based on back-of-the-envelope calculations and only on the financial incentivized
upgrades we evaluated. Nevertheless, they provide helpful estimates to begin to under-
stand the impacts of EE upgrades in California.
3.3. Individual Product Effects

Beyond the overall positive results, we also examine which type of upgrade delivers the
most energy savings. Table 4 presents the coefficient estimates for various EE upgrades
based on equation (2). All the specifications are based on the matched sample for es-
timating the average treatment effect on the treated. Column 4 is based on specifica-
tions with the most conservative fixed effects—household-month fixed effects and time
fixed effects as in our estimation equation (2). Columns 1 and 2 include alternative
fixed effects—column 1 is with household and county-month-year fixed effects; col-
umn 2 is with household and city-month-year fixed effects. Columns 1–3 are clustered
at the household level to control for serial correlation. In column 4, we cluster the stan-
dard errors at the building level to control for spatial and serial correlation. As standard
22. Based on the EPA’s 2017 data, the emission factor in theUnited States is 7:07 × 10–4 met-
ric tons CO2/kWh. The information is retrieved from https://www.epa.gov/energy/greenhouse
-gases-equivalencies-calculator-calculations-and-references.

https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references


Table 4. Impact of Energy Efficiency Upgrade on Electricity Usage

2010–14 log(usage)

Variables (1) (2) (3) (4)

Appliance .0370*** .0350*** .0255*** .0255***
(.0027) (.0030) (.0032) (.0043)

Consumer electronics –.0017 .0190 –.0108 –.0108
(.0205) (.0250) (.0284) (.0285)

HVAC .0054** .0131*** –.0030 –.0030
(.0021) (.0029) (.0026) (.0029)

Lighting –.0038*** –.0079*** –.0042*** –.0042
(.0012) (.0013) (.0015) (.0026)

Pool pump –.1186*** –.1222*** –.1266*** –.1266***
(.0019) (.0022) (.0023) (.0023)

Refrigeration –.0639*** –.0684*** –.0617*** –.0617***
(.0007) (.0008) (.0009) (.0009)

Audits –.0207*** –.0224*** –.0268*** –.0268***
(.0008) (.0008) (.0010) (.0010)

Whole house retrofit .0275*** –.0086 .0147** .0147**
(.0052) (.0067) (.0065) (.0065)

Building envelope .0242*** .0238*** .0197*** .0197**
(.0045) (.0046) (.0054) (.0085)

Household and county-year-month
fixed effect Yes No No No

Household and city-time fixed effect No Yes No No
Household-month fixed effects No No Yes Yes
Month-year fixed effects No No Yes Yes
Observations 51,441,373 42,863,329 51,441,373 51,441,373
R-squared .8038 .8206 .9009 .9009
Overall savings:

Effect on log(kWh per month) –.0401***
(.0005)

Effect on kWh per month –25.929***
(.525)
Note. This table reports coefficient estimates and standard errors (in parentheses) from six separate re-
gressions—the top four are from eq. (2), and the bottom two are from eq. (1). For the top four regressions,
the coefficients of interest are indicator variables for households that have participated in the EE upgrade
financial incentive programs for that specific product (i.e., lighting, HVAC, etc.). For the bottom regressions
estimating overall savings, the coefficients of interest are indicator variables for households who have ever
participated in any EE upgrade. In almost all regressions (cols. 1–4 and the first bottom row), the dependent
variable is the natural log of 2010–14 monthly electricity consumption in kilowatt-hours. Estimations are
based on matching EE participants with those who have never participated in the programs in the following
variables: exact match on building type (single family, multifamily, condo, etc.), vintage bin, climate zone,
square footage percentile (only for single and multifamily housing), also fuzzy nearest distance matching
on variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age, percent-
age of ownership, percentage of occupancy rate, whether homeowner is also resident or not, geographic
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errors clustered at the building level yield more conservative results, we use this spec-
ification in the rest of the regressions.

Overall, the magnitude and the significance of the results do not change much,
especially for those products that deliver the most savings. For example, pool pump
upgrades, on average, deliver 11% to almost 13% of savings; incentives on refrigeration
upgrades generate 6%–7% of savings, on average. However, in the case of lighting up-
grades, we find that the magnitude of savings is smaller and insignificant in the more con-
servative specification (col. 4) than in the less conservative specification (cols. 1 and 3).

Table 4, column 4, highlights the results based on our preferable specification—
including household-month and time fixed effects and our most conservative standard
error estimation. The results are illustrated in figure 1. A negative number in the fig-
ure means that EE product upgrade participants decreased electricity usage. Based on
the results from all the multiple statistical models, pool pump upgrades yield the high-
est savings. Households participating in these upgrades, on average, reduce their en-
ergy consumption by 12%–13%. The result accounts for seasonal patterns: HVAC
may be utilized more in the summer, making those upgrades attractive during certain
months of the year. In this case, we may underestimate the savings impact (with small
savings) because electricity usage may suddenly go up right after upgrading the pump.
As we control for household-month fixed effects, we rule out this selection in month
factor by comparing electricity savings in the same month of the year, before and after
program participation. Other effective programs for reducing electricity consumption
include incentives for upgrading refrigeration (including refrigerator and freezer).
Households who have new efficient refrigerators or freezers reduce their electricity
consumption by 6% on average.

Lighting upgrades result in relatively small savings—0.3% to 0.7% reductions, and
statistically indifferent from zero in our most conservative estimate.23 The result could
location—x-y coordinates, whether household is registered under CARE/FERA energy discount pro-
grams for low-income households, and whether the household is identified as having a pool or not. Stan-
dard errors are clustered at the household level for the first three regressions, reported in cols. 1–3. Mean
pretreatment electricity consumption is 710 kilowatt-hours per month for households who have ever par-
ticipated in the energy efficiency programs. Standard errors are clustered at the building level for the last
regression, reported in col. 4. Specifications using city-time fixed effects have fewer observations because
households at the city boundaries are dropped.We do not report the “other” category, but to prevent from
overlapping program effect we still control for “other” upgrades (including the water savings kit).

* p < .1.
** p < .05.
*** p < .01.
23. This zero savings result is robust after dropping light bulb incentives given away at the
distributors/retailers because after interviewing the program managers at SCE, we found that
they worry that upstream/midstream light bulb incentives may not be correctly recorded in the
program data.



Figure 1. Energy efficiency upgrade overall regression result. Each figure plots estimated co-
efficients and 95th percentile confidence intervals corresponding to an indicator variable for
households that have participated in the EE upgrade, one for each type of upgrade. The depen-
dent variable in all regressions is the natural log of 2010–14 monthly electricity consumption in
kilowatt-hours, and the regressions include household-month fixed effects and time fixed ef-
fects. Standard errors are clustered at the building level. Estimations are based on matching
EE participants with those who have never participated in the programs in the following var-
iables: exact match on building type (single family, multifamily, condo, etc.), vintage bin, climate
zone, square footage percentile (only for single and multifamily housing), also fuzzy nearest dis-
tance matching on variables, such as median income, density, poverty, white, black, Asian, His-
panic, education, age, percentage of ownership, percentage of occupancy rate, whether home-
owner is also resident or not, geographic location—x-y coordinates, whether household is
registered under CARE/FERA energy discount programs for low-income households, and
whether the household is identified as having a pool or not. We do not report the “other” cat-
egory, but to prevent from overlapping program effect we still control for those “other” upgrades
(including the water savings kit).



Are Residential Energy Efficiency Upgrades Effective? Chuang, Delmas, and Pincetl 663
be attributable to any of the following three factors. First, lighting may constitute only
a small part of household electricity consumption. Second, some light bulbs may not
be installed when they are given away for free. Third, light bulb upgrades may have
been adopted anyway without those subsidies. We will not be able to directly verify
the third mechanism, but we investigate the second mechanism indirectly in the next
section by examining the product impact heterogeneity.

Audits, conditional on controlling for upgrading other technologies, can generate
around 2%–3% savings. This impact may come from a household’s behavioral change
as “nudge”-style intervention can be quite successful (Allcott and Kessler 2019). We
also find suggestive evidence of the behavioral change from a survey conducted by
the evaluation agency. Those who participated in the SCE audits engaged in more en-
ergy savings behaviors than nonparticipants (DNV.GL 2017b).

Other upgrades do not yield large impacts in terms of electricity savings. These in-
clude appliance upgrades (mostly dishwashers and clothes washers), HVAC retrofit,
whole house retrofit, and building envelope upgrades. This could indicate rebound ef-
fects, which happen when households increase their electricity consumption with more
efficient appliances. It is also possible that some households, when upgrading, may have
chosen larger appliances, which may lead to increased energy consumption.24 There
may also be cases where households, when made aware of being able to save energy,
spend less effort on energy conservation (Asensio and Delmas 2016).25 For example,
after upgrading to a more energy efficient product, people may not unplug their charg-
ing devices nor turn off unused lights. We do not have direct evidence in the data to
determine the most likely explanation. We investigate this issue in the next section
through an analysis of heterogeneous effects. Finally, consumer electronics upgrades
yield less conclusive results across models—the lack of savings resulting from these up-
grades may be due to the small sample size.

In summary, energy savings vary significantly by product type. While pool pumps
and refrigeration upgrades are associated with significant energy savings (12%–13%
and 6%, respectively), HVAC retrofits generate statistically insignificant savings over-
all.26 Furthermore, subsidies targeting clothes washers and dishwashers, entire home
retrofits, and building envelope upgrades are associated with increases in overall con-
sumption. The results are consistent throughout the models.
24. Houde and Aldy (2017) find that rebate programs induce a potential income effect that
EE participants upgrade to a more energy efficient yet larger appliance.

25. Asensio and Delmas (2016) observe residential households’ dynamic energy behaviors at
the appliance level through high-frequency smart-meter technology, and they find that when
households save energy by turning lights off, there is potential associated rebound effect of in-
creasing energy usage by plug load and heating and cooling.

26. This similar result was also found in previous impact studies conducted by government
contracted evaluators (DNV.GL 2014a).



664 Journal of the Association of Environmental and Resource Economists July 2022
We also present the graphical analysis, plotting the coefficients and 95% confidence
intervals for each individual product before and after the installation date. These event
study figures help us visually examine the electricity consumption pattern before and
after the EE upgrade. The results are presented in figure A3. The graphical analysis
shows the consistency of the result—pool pump and refrigeration upgrades are effec-
tive in terms of saving energy, and the impact is quite consistent over time. The graph
also confirms one of the important identification assumptions in a difference-in-difference
design—the trends in the pretreatment period between control and treatment group
look mostly parallel. However, assuming the pretreatment difference in trend carries
out is still a strong assumption. (We provide further robustness tests in the robustness
check section.)

To evaluate how the results may differ by season, we run the samemodel as above by
month. We present our results in figure 2 (for detailed coefficients, see tables A4, A5).
We find pool pump and refrigeration upgrades to be most effective, leading to savings
in all seasons. This may be because pool pump and refrigeration use about the same
amount of electricity throughout the year in California.27 HVAC upgrades have a
stronger seasonal effect—positive savings in the summer but none, or even negative sav-
ings, in other months. This result is consistent with the literature, which shows that
HVAC upgrades deliver savings during different months of the year or even different
times of day (Boomhower and Davis 2020). The result highlights the concern that the
effectiveness of HVAC upgrades may be limited by the behavioral responses of the
users, unlike more “passive” upgrade products like pool pump and refrigeration.Whole
house retrofits exhibit seasonal savings patterns similar to HVAC upgrades but with
larger confidence intervals and smaller savings in the summer months. This indicates
that the effectiveness of HVAC upgrades and whole house retrofits may depend on
weather and electricity usage patterns.
3.4. Comparison with Engineering Predictions

In order to quantify our estimates and compare them to the ex ante engineering esti-
mates recorded by SCE, we estimate a regression similar to equation (2), but instead of
taking the log of the dependent variable, we use the level of monthly electricity con-
sumption in kilowatt-hours as the outcome variable. The ex ante savings predictions
are based on SCE’s original gross savings projection achieved by a specific physical up-
grade. For each specific product upgrade, we calculate its average predicted monthly
savings based on SCE’s assigned life-cycle savings for that installed product. For exam-
ple, most products have a life cycle of more than five years, which is longer than the time
27. The almost no seasonality result for pool pump upgrades may be perplexing. Yet we find
evidence that a large portion of households operate their pool in the same manner year round in
Southern California (DNV.GL 2016).



Figure 2. Percentage change in electricity consumption by product and month. Each figure
plots estimated coefficients and 95th percentile confidence intervals corresponding to an indi-
cator variable for households that have participated in the EE program, one for each month.
The dependent variable in all regressions is the natural log of 2010–14 monthly electricity con-
sumption in kilowatt-hours, and the regressions include household-month fixed effects and time
fixed effects. Standard errors are clustered at the building level. Estimations are based on match-
ing EE participants with those who have never participated in the programs in the following
variables: exact match on building type (single family, multifamily, condo, etc.), vintage bin, cli-
mate zone, square footage percentile (only for single and multifamily housing), also fuzzy near-
est distance matching on variables, such as median income, density, poverty, white, black, Asian,
Hispanic, education, age, percentage of ownership, percentage of occupancy rate, whether
homeowner is also resident or not, geographic location—x-y coordinates, whether household
is registered under CARE/FERA energy discount programs for low-income households, and
whether the household is identified as having a pool or not.
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period of our data, so we directly divide the predicted annual savings by 12 to get
monthly savings. For products that have a life cycle of less than five years, we calculate
their predicted average monthly savings for five years (predicted annual savings times
the life cycle of the product and divided by 60). This ex ante projection is generated
based on SCE’s engineering department and multiple program teams, analysts from
the public and CPUC, and other industry affiliates and professionals. SCE has a so-
called workpaper to determine the deemed savings based on the type of measure the
customer installed, the program, and other important variables such as customers’
housing, climate zone, and so forth.28 Thus, the imposed assumptions of those ex ante
savings must be approved by CPUC following specific guidelines.29 The comparison is
summarized in table 5. We also calculate the realization rate, where we divide our es-
timated average savings by the engineering estimates to see howmuch the actual savings
has achieved the predicted ex ante engineering estimates. As utilities receive funding
based on the predicted engineering estimates, the realization rate helps policy makers
evaluate how well each type of upgrade achieves its promise.

As table 5 shows, energy savings are inconsistent with ex ante engineering estimates.
For example, lighting upgrades achieve only 7% of the engineering estimates of expected
savings,30 and whole house retrofits achieve just 18%. The result of whole house
retrofits seems puzzling. However, this finding is not unprecedented, as such low real-
ization rates are also found in previous impact evaluation reports conducted by consult-
ing companies with smaller sample sizes (12%–50% in DNV.GL [2014b]; –48% to
highest 24% in DNV.GL [2017a]). Previous reports also provide some potential rea-
sons for these findings, such as an overestimation of the ex ante savings in the retrofit
planning stage or a potential rebound effect generated by adding an extra furnace, cen-
tral air conditioning, or additional square footage during the retrofit. Despite the small
effects, whole house retrofits still seem to generate more savings than other product
upgrades, such as dishwasher, clothes washer, and building envelope (see table 5).

Pool pump upgrades, on the other hand, generate larger savings than the ex ante
estimations. This is likely due to the assumptions made during the engineering esti-
mation process. For example, it is assumed that single-family customers upgrade from
a two-speed pool pump (a more efficient type) to a variable speed pool pump (the most
efficient type) even if they actually upgrade from a single speed pool pump (a less ef-
ficient type). It is also assumed that the pump is used for only a few hours a day. These
assumptions, approved by CPUC under specific guidelines, lead to underestimation in
28. Examples of previous approved workpapers can be downloaded from CPUC’s website,
http://deeresources.net/workpapers.

29. An example guideline describing the process utilities have to follow to generate
workpapers can be found at http://www.deeresources.com/files/DEER2020/download
/CPUC%20WP%20workplan_12242018_Rev1.pdf.

30. The estimated coefficients for lighting programs are not significant in our most conser-
vative specification.

http://deeresources.net/workpapers
http://www.deeresources.com/files/DEER2020/download/CPUC%20WP%20workplan_12242018_Rev1.pdf
http://www.deeresources.com/files/DEER2020/download/CPUC%20WP%20workplan_12242018_Rev1.pdf


Table 5. Comparison of the Impact of Energy Efficiency Upgrade on Electricity Usage
with Ex Ante Estimates

2010–14

Changes inMonthly Electricity Usage (kWh)

Variables
Measured with
Billing Data

Utility Engineering
Estimates Realization Rate

Appliance 5.004** –14.19 . . .
(2.123)

Consumer electronics –28.336 –15.55 . . .
(20.324)

HVAC –14.241*** –21.89 65%
(1.555)

Lighting –.313 –4.25 7%
(1.001)

Pool pump –123.979*** –42.17 294%
(1.914)

Refrigeration –32.335*** –53.25 61%
(.475)

Audits –24.017*** –10.59 227%
(.657)

Whole house retrofit –10.514*** –55.35 19%
(3.865)

Building envelope .770 –5.19 . . .
(4.944)

Household-month fixed effects Yes
Month-year fixed effects Yes
Observations 51,570,259
R-squared .9699
Note. This table reports coefficient estimates and standard errors (in parentheses). The coefficients of in-
terest are indicator variables for households that have participated in the EE upgrade financial incentive pro-
grams for that specific product (i.e., lighting, HVAC, etc.). In this table, the dependent variable is the 2010–
14 monthly electricity consumption in kilowatt-hours. Estimations are based on matching EE participants
with those who have never participated in the programs in the following variables: exact match on building
type (single family, multifamily, condo, etc.), vintage bins, climate zone, square footage percentile (only for sin-
gle andmultifamily housing), also fuzzy nearest distance matching on census block group–level variables, such
as median income, density, poverty, white, black, Asian, Hispanic, education, age, percentage of ownership,
percentage of occupancy rate. Other matching covariates are from the census block group–level variables, such
as median income, density, poverty, white, black, Asian, Hispanic, education, age, percentage of ownership,
percentage of occupancy rate, and also variables at the account level, including whether homeowner or not,
geographic location—x-y coordinates, whether the household is registered under CARE/FERA energy dis-
count programs for low-income households, and whether the household is identified as having a pool or
not. Mean pretreatment electricity consumption is 710 kilowatt-hours per month for households that have
ever participated in the energy efficiency programs. Standard errors are clustered at the building level. Ex ante
savings are reported using the median value.We do not report the “other” category, but to prevent from over-
lapping program effect, we still control for “other” upgrades (including the water savings kit).

* p < .1.
** p < .05.
*** p < .01.
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ex ante predictions. The results indicate that the bias of engineering estimates, which
often lack relevant information on individual behavior, can go both ways, validating
the importance of conducting EE evaluations with individual meter or billing data.

4. HETEROGENEOUS EFFECTS

4.1. Financial Incentives

We further investigate product upgrade effectiveness based on the level and delivery
mechanism of the financial incentives. We report estimates based on the product up-
grade effectiveness interacted with the way subsidies were distributed and the level of
subsidy (see table A6). For example, some product upgrades offer indirect financial in-
centives to upstream actors (i.e., product manufacturers) and midstream actors (i.e.,
retailers or service providers), while others offer downstream incentives that target end
users through mail-in or in-store rebates or discount.

Giving away free light bulbs (results in rows 6, 9) generates smaller savings, com-
pared to those that provide partial financial incentives (table A6, rows 6, 9).31 On av-
erage, lighting rebates lead to 3% significant savings, while free lighting upgrades lead
to only 0.3%–0.4% savings. The result remains the same when controlling for the qual-
ity of light bulbs using the ex ante predicted savings (table A6, col. 2). This indicates
larger impacts among products with cost-sharing delivery methods as compared to the
same type of products given away for free. This is in line with the public finance liter-
ature that has identified several positive effects of cost sharing. First, there might be a
selection effect (or screening effect) where cost sharing helps select those who need the
product more and therefore use more (Ashraf et al. 2010).32 Second, there might be a
psychological effect where people exhibit behavioral bias by using the product more if
they pay for it (similar to sunk cost effect) (Thaler 1980; Arkes and Blumer 1985). Third,
there might be a signaling effect where people view the product as having higher qual-
ity, thus encouraging its usage (Bagwell and Riordan 1991; Riley 2001). These results
about free products only apply to lighting. However, we observe differences regarding
the type of subsidy provided for HVAC and pool pump upgrades, which can be pro-
vided either as a monetary subsidy for the equipment, or a subsidy for the labor through
direct install. The results show that the direct install subsidy is associated with decreases
in electricity for pool pumps but not HVAC. Furthermore, the subsidies can be provided
to the upstream/midstream (contractor or retailer) or downstream (to the consumer).
We find that downstream subsidies are associated with decreases in electricity in the
case of lighting and pool pumps.
31. The exception is HVAC programs. Results for upstream/midstreamHVAC andHVAC
rebate programs are not significant because there are much fewer observations in upstream/
midstream HVAC programs. We cannot conclude whether this statement applies to HVAC.

32. In contrast, free lighting programs may give free light bulbs to those who do not need
them, for example, people who just replaced their light bulbs or those who would never throw
out perfectly good light bulbs even though the new light bulbs save energy.
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Therefore, cost sharing may induce a positive selection of households who need or
value the product more and thus use the product more appropriately. The result high-
lights the possibility of improving the effectiveness of the EE upgrades by choosing the
appropriate delivery mechanism for different products. The result is not very conclusive
comparing upgrades giving incentives to the upstream/midstream entity versus to the
end users.33

4.2. Household and Building Characteristics

We also conducted subgroup analysis. We estimate equation (2) by income quartile,
vintage, square footage, and climate zone to understand where EE upgrades deliver the
largest/least savings. This analysis can help policy makers better target upgrades and
areas that deliver the largest savings.

We find that the magnitudes of the coefficient for pool pump and refrigeration up-
grades are consistent with the main result in table 4, column 4, based on the subgroup
analysis. Therefore, we focus our analysis of heterogeneous effects among products that
have potential rebound effects—EE participants seem to use more electricity after up-
grading, compared to nonparticipants. Then we try to compare electricity usage among
different income quartiles, square footage quartiles, and vintage subgroups.

We compare savings between those who live in a lower income neighborhood (be-
low median income) and those who live in a higher income neighborhood (above me-
dian income) using median income information from the census block group data (see
table A7). We do not see significant differences by income groups across various products,
except for audits.34 Audits lead to slightly lower savings for households in lower in-
come neighborhood (2% savings) than households in higher income neighborhood
(3% savings), although this difference is economically minuscule. However, since in-
come is identified under a coarse block group, rather than account or building level, we
need to take this result with a grain of salt.

In addition, we compare savings between those who live in a larger home (first and
second square footage quartile) and those who live in a smaller home (third and fourth
square footage quartile) (see table A7).35 Most of the comparisons based on the size of
33. Pool pump programs incentivizing end users seem to generate slightly larger savings than
incentivizing upstream/midstream manufacturers and contractors. However, the difference may
not be considered large in economic terms.

34. Even though the coefficients of HVAC, lighting, and whole house retrofit look slightly
different by income group, the differences are not statistically different. We also find a consistent
pattern by income quartile.

35. For multifamily housing and condominiums, we cannot clearly identify each account’s
exact square footage—we can only identify the building structure they live in based on geocoding
their account address to match with assessors’ tax database. Therefore, we use single-family hous-
ing for this subgroup analysis.
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the building do not yield economically significant differences. The only exception is au-
dits. Audits lead to around 5% savings for large buildings (third and fourth quartile), and
1% savings for smaller homes (first and second quartile). This result may simply be due
to the larger savings potential in retrofitting a large building.

We also compare savings between those who live in a home built before 1978 and
those in a home built after 1978 (see table A7). We chose 1978 as the cut-off year be-
cause this is the year when California Title 24 Building Energy Efficiency Standards
were established.36 The most interesting results here concern HVAC and whole house
retrofits. ForHVAC, coefficients are positive before 1978 and negative after 1978. This
indicates that participants who upgrade their HVAC systems in older buildings use more
electricity after upgrading, compared to the nonparticipants. It could be that energy ef-
ficient HVAC and building efficiency may complement each other. Indeed, Liang et al.
(2017) found that some initial building attributes may affect the effectiveness of retrofits.
For example, HVAC duct sealing retrofits, a type of popular retrofitting in our data,
can be more effective with better roof insulation. We also find suggestive evidence that
those who have participated in both HVAC and whole house retrofits reduced their
electricity consumption by 8% more than those who have simply done HVAC retrofit.37

Regarding whole house retrofitting, the coefficient is negative before 1978 and pos-
itive after 1978. This result indicates that older homes benefit from the retrofitting. This
is consistent with engineering assumptions that EE investments in older buildings may
yield larger savings potential. However, newer homes increase their consumption after
the retrofit. This surprising result could be explained by an increase in the size of the ap-
pliances installed or adding an extra unit (such as room air conditioner, central air con-
ditioning, furnace) during the retrofit. Based on anecdotal evidence from one anonymous
SCE programmanager, some people increase the size of their homes when conducting
a whole house retrofit. The government contracted report also found evidence of all the
stated potential rebound actions (DNV.GL 2014b).38

The results for the whole building retrofits are the opposite. After retrofitting, par-
ticipants in older buildings consume approximately 2%–3% less electricity, while partic-
ipants in newer buildings use more electricity. This heterogeneous effect in whole building
retrofits indicates that older buildings may have larger savings potential. Nevertheless, we
recognize the fact that all whole house building retrofits have also potential to improve
36. There may be a lagged effect for Title 24 implementation that attenuates this compar-
ison. However, this attenuation effect will make our results even stronger if we find drastic het-
erogeneous program effects comparing buildings constructed before 1978 with those built after
1978.

37. We have only 46 households that participated in both HVAC and the whole house ret-
rofit programs, so we are not able to estimate further by the building type.

38. DNV.GL (2014). Whole House Retrofit Impact Evaluation of Energy Upgrade Cali-
fornia Programs Work Order 46, http://www.calmac.org/publications/CPUC_WO46_Final
_Report.pdf.

http://www.calmac.org/publications/CPUC_WO46_Final_Report.pdf
http://www.calmac.org/publications/CPUC_WO46_Final_Report.pdf
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natural gas savings. However, we do not have access to natural gas data for further analysis.
This limitationmay cause us to underestimate the overall energy savings fromwhole house
retrofits, and the magnitude of this underestimation will depend on the use of natural gas
services in homes.

We further examine the impact of different EE product upgrades by climate zone
(see table A8). A climate zone is defined based on its weather pattern according to Cal-
ifornia Energy Commission’s definition (see fig. A4). The overall results are consistent
with the main results. The energy savings estimates ofHVAC andwhole house retrofits
are heterogeneous, as we expect them to be more sensitive to the local weather pattern.
This result is in line with figure 2, which shows the seasonal impact of HVAC and whole
house retrofits.39

We compare product effectiveness across different building use types (see table A9).
The classification is based on building use and construction design. The final categories
used in the paper are based on the categorization adopted by Arizona State University
Researchers (Reyna and Chester 2015), namely, single family, multifamily, condominium,
mixed use (any residential usage mixed with commercial or industrial usage), and resi-
dential other (e.g., mobile home). The ranking of the savings is mostly consistent with
the overall result—pool pump and refrigeration upgrades are on average the most effec-
tive in terms of electricity savings. It seems like building envelope upgrades save much
more electricity in other types of residential buildings,40 compared with single-family,
multifamily, and condominium buildings.

4.3. Interaction Effect

Some products may work better when adopted in combination with other technological
upgrades. We examine some of the most common combinations to better understand their
impact. We find some intriguing results for HVAC and refrigeration upgrades: HVAC
upgrades work better when a whole house retrofit is also conducted (see table A10). How-
ever, electricity savings are not statistically significant when an HVAC upgrade is done
with a building envelope upgrade (though the coefficient is negative). The full interac-
tion results (see table A11) are consistent with the results in table A10. We also find a
similar effect for refrigeration, where refrigeration upgrade is more effective with the house
retrofitting (see table A10, col. 3). Upgrading refrigeration and retrofitting the whole house
together can further decrease 3.9% of electricity consumption, in addition to the original
6% of savings from the refrigeration upgrade (results are consistent in table A11 whenwe
39. For example, HVAC retrofits deliver 1% savings in climate zone 10, which requires higher
demand for energy needed to heat a building (1,678 heating degree days for the representative
city in the zone), while they deliver a 5% increase in electricity consumption in zone 6, where heat-
ing is not in high demand (742 heating degree days for the representative city in the zone). The
savings results from whole house retrofits also differ from zone to zone.

40. This is driven especially by mixed use buildings.
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conduct a similar analysis interacting refrigeration with all other products). Yet, upgrad-
ing both refrigeration and building envelope does not show a significant enhancing effect.
Finally, lighting upgrade, if done in conjunction with other various upgrades (such as ap-
pliance, HVAC, refrigeration, and whole house retrofit) can save more electricity. It is
worth noting that HVAC and refrigeration upgrades both work better in combination
with whole house retrofit, but the interaction ofHVAC and refrigeration upgrades and
building envelope upgrade is insignificant. This might be because a whole house retrofit
is a more comprehensive home enhancement than a building envelope upgrade. A whole
house retrofit aims to configure all aspects of the house to be as energy efficient as pos-
sible as well as to make all improvements complement each other. For example, a house
retrofit usually ensures that all key issues such as air quality, dampnessmanagement, and
ventilation are managed appropriately.41

As a large amount (44%) of the EE participants upgraded more than one product,
these results indicate that the impact of lighting upgrades may be overstated if one fails
to control for overlapping upgrade product impact. In summary, the most effective in-
teractions include HVAC, refrigeration, and lighting upgrades conducted with a whole
house retrofit.
5. ROBUSTNESS CHECKS

One important assumption for this difference-in-difference estimation is that in the ab-
sence of the subsidy, the matched nonparticipants should have a similar electricity con-
sumption pattern to EE upgrade participants after controlling for household-month and
time fixed effects–parallel trend assumption. This assumption is not directly testable.
Still, we can assess the robustness of our results based on several different tests.

First, we conduct a falsification test, as the recent literature recommends a move away
from relying on traditional parallel trend pretests (Bilinski and Hatfield 2019; Freyal-
denhoven et al. 2019; Roth 2019; Rambachan and Roth 2021).42We randomly assign
the installation date two years before the actual reported installation date. As expected,
the impact for those effective programs, namely, pool pump and refrigeration upgrade
programs, disappears or appears to be very small if we randomly assign two years before
the installation date for the EE participants (see table A12).

Second, we conduct another robustness test to control for the group-specific time
trend (see table A13) (Mora and Reggio 2012; Bhuller et al. 2013; Dobkin et al. 2018;
Rambachan and Roth 2021). Specifically, we apply an alternative “parallel growth” as-
sumption to control for this normalized time trend for each product. In other words,
we assume that the acceleration rate of the outcome difference between the control and
41. See https://www.retrofitacademy.org/what-does-whole-house-retrofit-mean-to-me/.
42. The preexisting trends for the most effective products, pool pump and refrigerator, ap-

pear to be parallel (see fig. A2).

https://www.retrofitacademy.org/what-does-whole-house-retrofit-mean-to-me/
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the treated would have been constant in the absence of the treatment. Using this alter-
native assumption, we find that the results for the pool pump and refrigeration upgrades
are consistent. The savings results for appliance, HVAC, whole house retrofit, and building
envelope upgrades are slightly higher than the previous estimation. Nonetheless, they still
yield either very small or nonsignificant savings results compared with their ex ante en-
gineering estimates, indicating concerns for a rebound effect.

Third, we conduct a sensitivity analysis based on the approach in Rambachan and
Roth (2021), which allows the presence of nonlinear differential trends between treat-
ment and control groups. This method is useful even when the researchers have detected
a violation of the parallel trend assumption, as the analysis helps to see how large this
nonlinearity is for the detected results to break down. To do this, we estimate an event-
study specification under different assumptions about the degree of the nonlinearity—
M, whereM 5 0 when the control and treatment groups follow a linear trend. A larger
M means a larger change in the differential slope from period to period. Based on our
calculation, our savings results are reasonably robust for the most effective upgrades,
namely, pool pump and refrigeration, as the breakdown values are both sufficiently large.43

See some more details in appendix C and figure A5. Finally, we assess the robustness of
our results by adding a household-specific time trend variable—a similar test to that con-
ducted by Davis et al. (2014) (see table A14). We explain the details in appendix C.

We also tried different types of matching.We conduct the matching separately by each
type of product as somemay be concerned that people who adopted different technologies
may be different (see tableA15).We also conduct two othermatching algorithms used by
Davis et al. (2014) (see table A16): we match the EE participants with the never par-
ticipants by only their location through the x-y coordinates (col. 1), and we use location
and households’ previous electricity usage (col. 2). The results are all quite stable.44

We ran 11 separate regressions to estimate savings impact for each type of upgrade
one by one without controlling for overlapping upgrades (see table A17). We find that
most results are consistent with our main results in table 5, except for lighting. The sav-
ings estimations are slightly overestimated if we do not control for other product types.
This result again stresses the need to control for overlapping product effect.

Finally, we conduct several other robustness checks. As the actual upgrade may
take time to be effective, we allow lags (one month, two month, three month) for the
treatment as alternative specification. We also take into account special cases where
43. In our case, the breakdown value of M is 0.025 for pool pump, and 0.015 for refriger-
ator. To put this into economics context, it is equivalent to a 20% (2.5/0.126) change in electricity
price, and 12% change in electricity price (1.5/0.126), respectively, if we assume that the short-
run price elasticity in electricity demand is 0.126 (Labandera et al. 2017).

44. The slight difference is that in table A15 when products were matched one by one, in-
centives for whole house retrofitting and building envelope no longer associated with positive
coefficients, yet they are not statistically different from zero.
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households may have installed solar panels or when households may move to different
buildings during our study period. We use not yet participating households as the alter-
native control group to reestimate the coefficients. All the results are consistent to the
main results. See all the details in appendix C and tables A18 to A20.

6. CONCLUSION

Given the large amount of public funds spent on promoting energy efficiency upgrades,
our analysis adds credible empirical evidence about the effectiveness of existing EE up-
grades. Overall, our results—based on all upgrades providing financial incentives in SCE
service territory—point to around 4% energy savings. However, when looked at individ-
ually, it is clear that some EE product upgrades are more effective than others. For ex-
ample, subsidizing pool pump and refrigeration upgrades consistently leads to high rates
of energy savings (12% and 6%, respectively), while other upgrades raise concerns over
rebound effects. In other words, as evidenced by the literature, customers may use more
energy or purchase larger units when the per unit cost of energy service is cheaper (Davis
2008;Houde andAldy 2017; Sun 2018). Though there is not yet enough information to
distinguish the mechanisms behind the rebound effect, we identify building types that
exhibit the effect and advise policy makers to keep these in mind when developing in-
centive programs.

In addition, the results highlight the importance of incorporating end-use billing data
in impact evaluations, as we find discrepancies between engineering estimates and actual
measured savings. For example, the CPUC’s overall impact evaluation report, which is
based on engineering estimates, claims that lighting programs could deliver large savings.
However, this is not what we find in our analysis. Some of this discrepancy may come
from ineffective program implementation rather than problems with the product itself—
for example, we find that giving away free light bulbs is associated with nonsignificant
savings, while subsidizing the cost of new light bulbs is more effective.

Our study highlights the potential for improving EE upgrade effectiveness by choos-
ing the appropriate subsidy for different products. The results also indicate that policy
makers should consider the allocation of program funding not simply based on engineer-
ing projections but also based on real measured impacts such as those described in this
study. For example, lighting programs, which are seen worldwide as effectivemethods of
increasing energy efficiency, may only have minor effects in regions like California. Mea-
sured impacts can be collected by better monitoring new programs and correcting ac-
cordingly. Upgrade incentives for HVAC, building envelope, and dishwasher incentives
may generate cobenefits such as home comfort and convenience, but progress toward
the overall environmental target of reducing electricity consumption may need further
investigation.

It is worth noting that one limitation of this analysis results from the categorization
of product types, for example, HVAC upgrades do not clearly distinguish between air
conditioning units and heating systems. The inability to distinguish two separate energy
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delivery systems limits our ability to evaluate the effectiveness of each system individ-
ually. Therefore, for future evaluation purposes, we recommend creating a more refined
classification of the program data. This classification could be informed by the “technol-
ogy category” as defined in the Building Energy Data Exchange Specification (BEDES),
which is a dictionary of terms developed by the USDepartment of Energy for stakeholders
to facilitate important energy investment decisions.We recommend that, within this clas-
sification scheme, categories that represent a broad collection of energy services (i.e., heat-
ing, ventilation, cooling) be broken down into individual categories. Each of these cate-
gories could then be separately analyzed for performance/effectiveness.

Furthermore, while electricity is a major energy source for residential homes in the
United States, natural gas is also widely used. While the analysis of natural gas is be-
yond the scope of this analysis, it would be helpful to evaluate natural gas in future
work. Indeed, it is possible that some households during a remodel decide to switch
the energy source of their appliances. However, current market research indicates that
this might not be a widespread phenomenon during the time period of our analysis. Nev-
ertheless, our results need to be evaluated with caution, particularly as electricity appli-
ances become more efficient and compete more effectively with gas appliances.

An important complement to our study will be to understand the low uptake of en-
ergy efficiency upgrades. In order to implement the most effective programs, policy mak-
ers may need to better understand how different program designs affect adoption rates.
For example, pool pump upgrades may have great savings potential but will have low
adoption potential in a low-income neighborhood without many pools, while HVAC
and whole house retrofits may exhibit greater adoption potential for low-income fam-
ilies and generate larger side benefits, such as home comfort. To better understand this
distributional effect, future researchers should conduct household-level surveys or ex-
periments to determine, for example, the optimal cost-sharing level for various energy
efficiency upgrades.
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