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Abstract

The Tana River provides half of Kenya’s power and nearly all of Nairobi’s 
water supply. Kenya’s population has grown rapidly in the last half-century, with 
more growth expected in the years to come. Preserving the health of the Upper 
Tana River watershed is critical to help Kenya meet the demands of an increasing 
population especially as climate variability increases. The Nature Conservancy 
established the Upper Tana-Nairobi Water Fund to protect and restore the quality 
and supply of water in the Upper Tana River basin. The Water Fund brings 
stakeholders in the Upper Tana Basin together to enact interventions, or 
sustainable agricultural practices that improve water flow and quality for users 
downstream. We used streamflow, land cover and precipitation data to analyze 
the impact of The Nature Conservancy’s interventions. We have investigated the 
efficacy of currently employed interventions in improving water availability in 
the watershed. While current interventions are effective, we have made multiple 
recommendations for the Water Fund moving forward and brought to light the 
current limitations in evaluating the watershed. 

According to estimates from the World Health Organization, over half the world’s 
population will live in water-stressed areas by 2025 (Garthwaite, 2019). Climate change, 
population growth, and pollution are depleting water sources across the globe, threatening the 
livelihoods of millions of people. One particularly high-risk area is Kenya, whose population has 
quintupled since the 1970s, growing from 11 million to 52 million, with the United Nations 
estimating that by 2050, it will reach 95 million (Anderson, 2021). Nairobi, Kenya’s capital, is 
growing at an annual rate of 2.8%, from half a million residents in 1971 to nearly 4.5 million 
today (Anderson, 2021).Water is in short supply, with a 2013 survey reporting that over 60% of 
Nairobi’s residents are water insecure (TNC, 2015). A steady and healthy water supply provides 
valuable ecosystem services and is integral to support Kenya’s growing population. 

The Tana River supplies 95% of Nairobi’s water and half of the country’s energy (TNC, 
2019). It is Kenya’s longest river, flowing more than 1500 kilometers from the Aberdare 
Mountains in the north before terminating in a delta at the Indian Ocean (Langat et al., 2017). 
The entire Tana River Basin covers ~95,000 km2 and is home to millions of wildlife species as 
well local communities (TNC, 2015). Since the 1970s, the number of small subsistence farms in 
the upper basin has skyrocketed (TNC, 2015). The dual effects of climate change and rapid 
population growth are leading to increased sediment erosion in the Upper Tana River Basin, 
reducing the capacity of reservoirs, and increasing water treatment costs (TNC, 2019). Water 
scarcity is predicted to disproportionately affect communities that have least contributed to 
climate change, such as the millions of farmers and fishermen who rely on the Tana River and its 
tributaries for survival and economic prosperity. Taking action now to prevent further damage 
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and help these communities preserve their water resources is critical to ensure the region’s water 
security for the future. To this end, The Nature Conservancy created a water fund, an 
organization that brings together public and private stakeholders to address threats to water 
security at their source through targeted, long-term investments in watershed conservation and 
management activities (TNC, 2015). In 2015, The Nature Conservancy established the Upper 
Tana-Nairobi Water Fund to conserve the watershed’s health and protect Kenya’s water supply 
(TNC, 2019). The Water Fund aims to improve water quality and quantity for all stakeholders, 
including farmers, Kenya’s hydropower generators, and the city of Nairobi. The Nature 
Conservancy partnered with IBM to improve water security in this at-risk region and evaluate the 
effectiveness of the Water Fund. 

In this project, we developed an open water data repository to help stakeholders in the 
Tana River region better understand and access available resources and analyzed the impact of 
TNC’s interventions in the region using IBM’s data analysis software. We gathered and analyzed 
publicly available water quality data, including turbidity, and flow rate, and socioeconomic 
characteristics to explore relationships between environmental and social factors that may affect 
water availability in the area.  

2.1 The Upper Tana River Basin 

Covering roughly 100,000 square kilometers in southeastern Kenya, the Tana River 
Basin is Kenya’s largest watershed. Its rivers originate from two high elevation focal points, 
Mount Kenya and the Aberdare Mountains, flowing over 1,000 kilometers before terminating in 
a large delta at Ungwana Bay in the Indian Ocean (Langat et. al, 2017). The Tana River’s main 
tributaries are the Chania, Thika, Sagana, Thiba, and Mutonga (Langat et. al, 2017). These rivers 
form sub-basins within the larger river basin. Some of the tributary rivers are perennial while 
others are dry for part of the year (Knoop, 2012). The Tana River Basin can be split into three 
separate sub-regions: an upland forested area with more rainfall and a drier, less mountainous 
mid-basin that leads into the lower catchment, and the Tana Delta (Baker et al. 2015). 

Mountain area soils are mainly volcanic ash soils, while soils in lower elevations are 
derived from metamorphic rocks, resulting in fertile clay and poorer leached clay (Dijkshoorn et 
al. 2010). Lower slopes are mainly cultivated or forested while high elevation mountain areas 
are moorlands with U-shaped and shallower valleys created by glaciations (Veldkamp et al. 
2011). 

2.1.2 Precipitation 

Over 80% of the Tana River area is classified as arid and semi-arid (Water Resources 
Authority, n.d.). The area’s average annual precipitation is 679 millimeters but varies 
significantly both spatially and temporally (Knoop et. al, 2012). For example, average annual 
precipitation in the highlands is roughly 2,200 millimeters, but only 370 millimeters in the lower 
delta (Langat et. al, 2017). Temporally, the basin follows a bimodal distribution; it has two wet 
and two dry seasons. The first wet season spans April to early June, and the second falls between 
November and December. Approximately 92% of the basin’s rainfall occurs during the wet 
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seasons. The remainder of the year, mid-December to March and June to October, are considered 
dry seasons (Langat et. al, 2017). 

Excessive flooding is a problem during the wet seasons, especially in low-lying areas. 
Flooding picks up large amounts of soil, leading to increased erosion and decreased water 
quality. This results in longer, more expensive purification in water treatment facilities, which 
can serve as a limiting factor to the availability of clean water (Knoop et. al, 2012). Flooding can 
also increase the risk of mosquito-borne diseases. A study by Otieno et al. (2019) showed that 
flooding resulted in higher risks of disease outbreak. The increase in stagnant water provides 
better conditions for mosquito larvae that ultimately mature to infect people and livestock with 
deadly diseases such as the Rift Valley fever. While increases in sediment accumulation due to 
greater water retention and surface runoff is the main concern during the wet seasons, finding 
water sources for domestic and agricultural use during the dry seasons becomes the challenge 
because often, natural and stored water are insufficient for Kenya’s growing population during 
dry spells. 

2.1.3 Land Use and Land Cover 

Agriculture constitutes a critical land use for this region. In the higher, wetter regions of 
the Tana River Basin, cash crop agriculture is common and consists primarily of tea, coffee, and 
maize (Knoop et. al, 2012; Langat et. al, 2017). In the mid and low elevations, irrigated crops 
such as flowers, fruit, and vegetables as well as livestock are produced (Huinink & Droogers 
2015; Water Resources Authority, n.d.). The most popular method of farming in the Tana River 
Basin is flood recession farming, which relies on natural irrigation and fertilization from regular 
floods. An estimated 115,000 farmers in the basin rely on this method to grow crops (Leauthaud 
et al., 2013). Flood recession farming has a very high net return to energy expenditure because 
the only human inputs are land and labor as farmers rely upon rainfall and flooding instead of 
irrigation (Saarnak 2003). Rainfed subsistence agriculture now constitutes over 60% of the land 
use in the Upper Tana Basin (Hunink et al., 2013). Currently 64,425 hectares of the basin are 
under irrigation, and an estimated 292,100 additional hectares are slated for irrigation at the 
lower Tana by the year 2030 (Langat et. al, 2017). 

2.1.4 Hydropower 

Approximately 50% of Kenya’s total energy needs are met by hydropower production, 
with much of that attributed to the five dams on the Tana River (Baker et al., 2015). These five 
dams, called the “Seven Forks Project,” include the Kindaruma, Kiambere, Kamburu, Gitaru and 
Masinga. The dams regulate the river, providing water for irrigated crops as well as 75% of 
Kenya’s total hydropower output (TNC, 2015). The Masinga dam is the largest and most 
significant in terms of regulating the river. An issue the dams face is that high sediment loads 
upstream can be abrasive to hydropower generating plants, causing energy losses and increased 
maintenance costs (Baker et al., 2015). While the dams provide water and power, the reservoirs 
created can increase sediment loads downstream, increasing operation costs and causing 
reductions in peak flows downstream (Kauffman, 2007; Leauthaud and Duvail, 2013). 
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2.2 Climate Change and Land Use Change in the Tana River Region 

2.2.1 Climate Change and Climate Variability 

The IPCC projects the global median temperature to rise by between 1.4 and 5.5°C by the 
end of this century, with temperatures in Africa rising the fastest, projected to increase by more 
than 2°C by 2050 and more than 4°C by 2100 (Adhikari et al., 2015). Along with temperature 
changes, median precipitation is expected to change between -2 and +20% (Adhikari et al., 
2015). Changes in temperature and precipitation will likely alter water resource availability in 
the area. 

Variability in weather and precipitation is expected to lead to intensifications of flood and 
drought frequencies and magnitudes, but the extent of change is uncertain (Adhikari et al., 2015). 
Much of Kenya is already considered water-scarce and will likely continue to be although 
precipitation is actually projected to increase by at least 10% in the country by 2100 (Adhikari et 
al., 2015). The IPCC projects precipitation will increase by 5-20% and decrease by 5-10% during 
wet and dry seasons respectively (Mango et al., 2011). Both average annual precipitation and 
drought frequency are expected to increase (Adhikari et al, 2015), and periods of severe drought 
are predicted to alternate with periods of heavy rain, leading to greater variability (Nakaegawa 
and Wachana, 2012). Historically dry and wet months of the year are also predicted to shift, and 
anecdotal evidence suggests such shifts may already be occurring (Gathagu, 2021). Seasonal 
shifts are expected to be a source of confusion and difficulty for farmers. 

2.2.2. Predicted Effects of Climate Change 

Variability in precipitation due to climate change may cause issues in water availability 
and increase demand for irrigation water. In addition, rising temperatures will increase saturation 
vapor pressure in air as well as evaporative demand, leading to increased water and heat stress 
(Adhikari et al., 2015). Water and heat stress both limit the land available for growing. In Kenya, 
around 75% of the population relies on agriculture, but only 20% of the land is currently arable, 
with the percentage of arable land projected to decrease in the future (Cheruto et al., 2016). 

The dual impacts of climate change and deforestation in East Africa are expected to 
increase the amount of total suspended solids in the Tana River and its tributaries. The Tana 
River Basin may become more vulnerable due to increased peak flows and hillslope erosion that 
also cause land degradation (Mango et al., 2011). Water resources are also expected to face 
degradation from anthropogenic pollution, such as from agrochemicals, and from siltation due to 
increased soil erosion caused by irrigation, cultivation, and overgrazing (Mango et al., 2011). In 
Africa, groundwater is a main source of irrigation and drinking water (MacDonald et al., 2012), 
but information on groundwater sources and storage in the region is lacking. 

The effects of climate change are significant threats to agriculture and soil in East Africa. 
Although precipitation is projected to increase, seasonal variation may limit water availability. 
Climate change may lead to higher susceptibility to poverty due to reductions in crop yields and 
food availability. Water availability and soil moisture are two primary limiting factors on 
agricultural productivity in the area and crucial in determining climate change effects on 
agriculture. The region is extremely vulnerable during dry spells and the dry seasons due to a 
lack of irrigation. With increased climate variability, much of the land may become less suitable 
for growing crops (Adhikari et al., 2015). The growing season length is projected to decrease 
after the middle of the century as heat and water stress limit soil suitable for crops (Adhikari et 
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al., 2015). In the higher-altitude, mountainous regions of Kenya, temperature is the limiting 
factor, so conditions may become more suitable for agriculture as temperatures rise. However, 
the situation is unfavorable in the lowlands, where warmer temperatures may increase water 
stress, leading to decreased soil suitability (Adhikari et al., 2015). When periods of increased 
rainfall follow periods of drought and dry soil conditions, soil erosion is expected to accelerate, 
shrinking areas suitable for agriculture (De Pauw and Ramasamy, 2020). In more arid areas, 
erosion and removal of topsoil contribute to diminished soil moisture storage capacity, leaving 
the land even more vulnerable to soil loss. Soil moisture can be measured on site using a soil 
moisture sensor or estimated using remote sensing.  

Deep percolation may occur more frequently in arid areas since rainy seasons generally 
coincide with lower temperatures and potential evaporation (Okello et al., 2020). Under the “best 
case” emissions scenario, RCP 2.6, where global CO2 emissions have already peaked and will 
decline to zero by 2080, average deep soil percolation is projected to increase by 14% and 
average soil water content by 1%. Under the “business as usual” RCP 8.5 emissions scenario, 
deep percolation is projected to increase by 10% and average soil water content is projected to 
decrease by 2% by the end of the century (Okello et al., 2020). Precipitation increases may 
impact soil moisture and water storage positively in the first half of the century, but overall 
impacts of increased warming for future generations are uncertain. A 2010 assessment of 
historical climate trends indicates a threat to crop surplus regions in central Kenya and the Upper 
Tana River Basin (Funk et al.). Extreme climate events, such as floods and droughts, already cost 
the Kenyan economy 2.4% of GDP (KES 16 billion) per year due to crop and livestock losses, 
reduced hydropower generation, and declines in industrial production (Mogaka et al., 2006). 

2.2.3 Land Use Change 

Population Growth 
While much of Kenya’s population is currently rural and reliant on agriculture, the rate of 

urbanization is increasing rapidly. Kenya’s current population is around 54 million, and the 
annual growth rate is expected to become 4.3% by 2025 (Wangai et al., 2019), one of the highest 
in the world. By 2030, 33% of the population is projected to live in urban areas. By 2050, the 
urbanization rate is estimated to reach 3.8%, aided by the development of tarmac roads that the 
government is planning to build (Wangai et al., 2019). Urban land cover is predicted to increase 
by 590% in Africa by 2030; it is projected to increase by a whopping 1900% in East Africa, 
mostly around the northern part of Lake Victoria in Kenya (Seto et al., 2012). Africa as a whole 
is expected to have the world’s highest urbanization rate, primarily occurring in regions that 
were previously mostly unaffected by urban development. The mountainous region of the Upper 
Tana River Basin is a hotspot for population growth (Baker et al., 2015). Since 1970, in the 
forested headwaters region around Mount Kenya human settlement has increased by ~60%. 

Impacts of Population Growth on Land Use 
Kenya’s natural land cover includes wetlands, grasslands, savannahs, forests and deserts. 

The greatest proportion of land in Kenya is devoted to agriculture and is expected to increase 
with population growth. High demand for arable land endangers forests as they are cleared for 
agriculture and settlements, with portions of land already set aside for industrialization and 
urbanization (Mango et al., 2011). Water, air, and land resources are expected to deteriorate due 
to forest degradation and deforestation, along with harmful land use and agricultural practices 
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such as overgrazing and poor irrigation techniques (Seto et al., 2012). Rapid population growth 
has implications for natural resources. Forests and wetter zones have high risks of degradation 
due to higher population pressure, and the Tana River region is no exception. 

The growing population in the Upper Tana River Basin is leading to increased land 
degradation, as land shortages result in smaller plot sizes and more intensive agricultural 
practices (Tanui, 2006). The forests at the headwaters of the Tana River are important natural 
infrastructure features because they control the amount and timing of flows within the catchment, 
but deforestation to support smallholder farms in the region is increasing rapidly (Baker et al., 
2015). Unsustainable farming practices send sediment into the river, resulting in higher costs for 
water treatment, lower water levels, and lower hydropower output. A survey found that 77% of 
inhabitants in the Thikia-Chania catchment said erosion occurs on their farms and 79% had 
observed a deterioration in water quality in rainy seasons over the last five years (Gathagu et al. 
2018). Water security will only become more challenging as climate change brings increasingly 
unpredictable rainfall and the country’s population continues to climb (TNC, 2019). 

2.3 Water Funds 

2.3.1 What is a Water Fund? 

A water fund is an organization that assembles public and private stakeholders and non-
governmental organizations (NGOs) to establish programs for improving water quality and 
economic activity in a water stressed area. Water quality is maintained by preserving ecosystem 
services upstream to prevent contamination or reduced flows downstream (Joslin & Jepson, 
2018). Each water fund has objectives specific to its location. Most focus on improving water 
quality and quantity and/or local ecological health (Joslin & Jepson, 2018; Ozment et al., 2016). 

Upstream, water funds work to prevent pollution and environmental degradation from 
agricultural practices and industry to maximize ecological services, such as increased pollinators, 
healthier crops, reduced wildfire risk, and thriving aquatic populations, across the entire basin 
(Apse et al., 2016). Improved water quality upstream should reduce water treatment and 
importation costs, leading to healthier, more economically secure communities across the river 
basin (Cheatham, 2020). Water fund activities downstream attempt to maintain water quality and 
availability for towns and cities in lower parts of a watershed. For many cities with burgeoning 
population growth, such as Nairobi, this is critical for public health (Abell et al., 2017). 

Water funds function as funding and organizing mechanisms for watershed protection 
(Bremer et al, 2015). An annual budget, usually ranging around US$2-4 million, is used for 
watershed projects, including monitoring, permitting, and collecting data (Bremer et al., 2015). 
Funding also comes from the water fund’s programs. As profits and economic gains enter 
downstream communities, they are expected to give back to the water fund. The money is 
reinvested into the watershed through projects for maintaining healthy ecological services 
upstream (Ozment et al., 2016). Eventually, water funds are expected to become economically 
independent through endowment from community programs, but they initially require support 
from other groups, including NGOs, governments, utilities, and corporations (Zyla et al., 
2018).Communication is an essential element of a successful water fund. A watershed is a shared 
natural resource that provides many valuable ecosystem services, so working together is 
important even when there are conflicting interests among stakeholders (Ozment et al., 2016). 
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2.3.2. The Upper Tana-Nairobi Water Fund (UTNWF) 

The Nature Conservancy currently has over 30 Water Funds around the world that have 
each raised $10 million or more for water conservation (TNC, 2019). The Upper Tana-Nairobi 
Water Fund (UTNWF), shown in Figure 1, was established in 2015 with the primary goal of 
improving farming practices in the watershed (TNC, 2019). It has since been followed by the 
launch of the South African Greater Cape Town Water Fund in 2018. In establishing the 
UTNWF, TNC followed their five-step plan to implement and maintain a successful Water  

Figure 1: Area covered by the Upper Tana-Nairobi Water Fund    

Image courtesy of The Nature Conservancy 
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Fund (Zyla et al., 2018), including doing a variety of physiographic, hydrologic and socio-
economic studies on the Upper Tana Region. The project area of the Tana River Water Fund 
covers 2.4 million acres (977,936 hectares) and focuses on water and soil conservation strategies 
in three of the main sub- catchments of the Upper Tana River watershed: Thika-Chania, 
Maragua and Sagana-Gura (Hess et al. 2018). 

Socio-Economic Findings 
In 2017, TNC carried out a survey of 1,002 randomly selected households in the Tana 

River region to gather socio-economic information (Hess et al., 2018). Farming was the leading 
occupation for household heads (70%). Of the 97% of households with agricultural land, over 
half said their land bordered a river or stream (Hess et al., 2018). Overall, 63% had heard of the 
term climate change, and 91% had perceived changes in weather patterns since they were young. 
More than half of those who had witnessed changed weather patterns said they altered their 
agricultural practices, mostly shifting to more drought-resistant, fast-maturing crops or seed. 

Agriculture accounts for approximately 25% of Kenya’s gross domestic product (GDP).  
The detrimental effects of climate change, which are expected to worsen, have already been 
documented in the region. Through changes in regional temperature, precipitation frequency and 
precipitation intensity, key agricultural crops will be affected, which is why this project aims to 
understand and predict how climate will change. Our projects are geared to help farmers in the 
region prepare for the coming years.  

Interventions 
In our context, interventions refer to agricultural conservation practices that can reduce 

suspended sediments in waterways and increase water flow during dry seasons (TNC, 2015). 
Examples include vegetation buffer zones, agroforestry, terracing of steep farmland, grass buffer 
strips in farmlands, reforestation, and mitigation of erosion from dirt roads (TNC, 2015). Some 
practices have already been implemented in the Tana River region with positive results. 

Evaluating the progress of TNC intervention work in the region is important, as it will 
allow key stakeholders to identify successful aspects of interventions and make informed 
decisions about proposed next steps. Each year, the TNC and its various committees and key 
stakeholders publish an annual progress report, which highlights its accomplishments for each 
working year.  

This report provides a qualitative overview of some achievements detailed in the progress 
reports, including social and hydrological benefits. Specifically, social benefits can be defined as 
outcomes from the watershed which resulted in positive improvements which are not directly 
related to improved hydrological outcomes. Hydrological benefits can be defined as improved 
hydrological metrics and outcomes which contribute to the success of the water fund's 
overarching goal of improving water-resource management and conservation efforts 

 Moreover, this report includes a quantitative analysis between priority micro watersheds 
to understand the relationship between intervention and control zones. The overall objective of 
the UTNWF is to make the Upper Tana River basin well-conserved by improving water quality 
in the whole basin, maintaining regular water flow rates throughout the year, enhancing 
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ecosystem services such as increasing biodiversity and ensuring food security, and overall 
improving the overall quality of life for local communities. To achieve this objective, UTNWF 
has done numerous interventions. And we categorized the interventions into two types: 
hydrological benefits and social benefits.  

Table 1. Descriptions of Hydrologic Interventions in the Upper Tana-Nairobi Water Fund 

Hydrological 
Interventions 

Description 

Rainwater 
Harvesting Water 
Pans 

Water pans, rainwater harvesting tools, are one of the techniques to 
promote climate-resilient agricultural production systems to provide 
increased water supply for agricultural purposes during the dry season. 
Farmers are able to use water pans to store water during the dry 
seasons for irrigation to maintain high crop yield.  

Low-head Drip 
Irrigation 
Equipment  

The equipment enables the use of the harvested water from the water 
pans more efficiently, improving water efficiency during dry seasons. 

Agroforestry Agroforestry is a land use management system in which trees are 
grown around farmland. Promoting agroforestry at the landscape level 
is done to increase carbon stock in the Upper Tana catchment.  

Riparian Zones, 
Wetlands Protection, 
and Restoration 

In order to assess crops and livestock within the identified wetlands, 
establishing a baseline map and a wetland biodiversity map in the 
Upper Tana. The findings will inform potential sustainable 
interventions in the wetland.  

Rural Road 
Improvement 

In order to reduce the negative impacts of runoff from rural roads and 
to decrease sediment loads in the runoff, UTNWF is working with the 
Kenya Rural Roads Authority to integrate rainwater harvesting from 
road runoff.  

River Gauging 
Monitoring Stations 

The stations are used to monitor the improvements in water quality and 
water quantity as well as the water levels and river flows of all rivers. 
Prior to establishment of the water fund, manual collection of water 
data was conducted twice a day. Currently, 28 river stations transmit 
data to Ndakaini Dam officials every two hours 

WHO Turbidity 
Standards Reached 

Turbidity levels are less than 5 NTU. 

Social Interventions Description 

Mobile Phone SMS 
Platform 

The platform aims to reach farmers in the Upper Tana watershed with 
conservation messages. These messages aim to modify how farmers 
manage soil erosion on their lands by sending out conservation tips 
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through SMS. Overall, enrollment into the platform is projected to 
increase, and 29,398 farmers are applying soil conservation and water-
saving methods. 

IT and Scientific 
Support 

Knowledge management and learning systems are implemented. 
Outreach conducted through surveys, training, and mobile phone 
usage. 

Rainforest Alliance 
certification 

The Rainforest Alliance certification program trains farmers to produce 
products using methods that support sustainability. Over 8,500 coffee 
farmers have achieved Rainforest Alliance certification, while 70,000 
farmers are in the process of obtaining certification 

Hunink et al. (2013) found that natural areas in higher mountain areas contributed very 
little sediment (3%) compared to cultivated and grazed areas, and that the most sediment is 
produced on steeply sloped agricultural areas. Areas where coffee is grown produced the most 
sediment while areas growing cash crops like tea and maize generally eroded at similar rates. 
The researchers simulated impacts of implementing contour strips and check dams to reduce 
erosion and reservoir sedimentation. The simulations showed that if these measures were 
implemented in all areas where coffee, maize and tea are grown, total sediment inflow to the two 
main downstream reservoirs could be reduced by 47%. The analysis found that if the local 
farmers’ unions, the Water Resources User Associations (WRUAs), were successfully involved 
in implementing and maintaining erosion control measures, sediment yield to reservoirs could be 
reduced by up to around 25% and reservoir life expectancy would increase by the same amount. 

UTNWF Economic Return on Investment 
The Nature Conservancy estimates that by 2025, water funds can be capable of providing 

70 million people with water security, improving livelihoods for 150,000 rural community 
members, and protecting 2 million hectares of freshwater in Latin America, Asia, and Africa 
(Cheatham, 2020). Scientists have found that for every dollar invested in conservation strategies 
in the Tana River watershed two dollars will be saved in costs for correcting impacts on water 
supply and energy production (TNC, 2019). Overall, a US$10 million investment in Water Fund 
interventions is expected to return US$21.5 million in economic benefits over the 30-year 
timeframe, with many stakeholders expected to profit (TNC, 2015).  

2.4  Stakeholders 

2.4.1 Introduction and Definitions of Stakeholders 

Stakeholders are defined as people who utilize and manage the natural resources (Buanes 
et al., 2004). Stakeholders of a water fund can be very diverse, varying from policymakers and 
governments to small-scale farmers and local communities. For a water fund to be successful in 
the long run, all stakeholders must benefit. Upstream communities are incentivized to work on 
projects that keep ecological services healthy (Joslin and Jepsin, 2018), and downstream 
communities save money through reducing importation and treatment costs and other benefits, 
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such as reduced healthcare costs 
(Abell et al., 2017). In a secure water 
fund, the watershed health, which 
includes habitats, local economies, and 
human health, improves. Generally, 
stakeholders who benefit the most are 
expected to contribute the most, 
although benefits are often widely 
distributed throughout the community 
(Ozment et al., 2016). The relationship 
in contributions between the water 
fund and stakeholders is illustrated in 
Figure 2. 

2.4.2 Upper Tana-Nairobi 
Water Fund Stakeholders 

Local communities, the 
Kenyan government, and public 
institutions all affect and are affected 
by the Tana River; they are all 
considered stakeholders of the Upper Tana-Nairobi Water Fund. They are categorized into two 
groups— formal and informal stakeholders. Formal stakeholders, such as The Nature 
Conservancy, are organized or institutionalized, while informal stakeholders, such as local 
fishermen, are not or are insufficiently organized (Beukering, 2015). TNC identified four main 
stakeholder groups with different interests for the UTNWF: municipal water suppliers, 
agricultural producers, hydropower operators, and government agencies (TNC, 2015). 
Agricultural Producers 

Agriculture and fishing are major components of Kenya’s economy. In rural areas, people 
depend on farming and fishing as a direct food source and income (Zwarts, 2006). In Tana River 
County, 86% of people are farmers or fishermen. Farmers in the lower catchment particularly 
rely on consistent flooding since many use the flood recession method of subsistence agriculture 
(Knoop et al., 2012). Farmers are most interested in improving production yield, and any project 
or regulation changing the flood regime will directly impact soil fertility and crop production. 
For fishermen in the Tana River Basin, fishing occurs in both the Tana River itself and in 
inundation zones (Leauthaud et al., 2013). Inundation zones provide a nutrient-rich environment 
that can serve as a natural nursery for fish growing. Based on a study conducted by the Institute 
for Environmental Studies in the Tana River Basin, flow rate and production yield in fisheries 
have a positive association. Water level and discharge are limiting factors for fishing (Beukering, 
2015), so any intervention disturbing river discharge and water levels would affect fisheries as 
well as farming. Agricultural yield is a function of cumulative action; sediment accumulates over 
time leading to a concave-down curve for yield increase over time (TNC, 2015). 

Water Suppliers 
The Nairobi City Water and Sewerage Company (NCWSC) is the major water and 

sewerage service provider for Nairobi. Reducing sediment concentrations to NCWSC has 

Figure 2: Transfer of money among different members of a water 
fund (Zyla et al. 2018) 
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multiple benefits, including avoided flocculant costs, avoided electricity costs, and avoided loss 
of revenue from lost water (TNC, 2015). The Upper Tana-Nairobi Water Fund is predicted to 
result in approximately US$250,000 of cost savings a year for NCWSC stemming from avoided 
filtration, lowered energy consumption, reduced sludge disposal costs, and fewer shutdown days 
(TNC, 2015). 

Energy Suppliers 
The Kenya Electricity Generating Company (KenGen) is the leading electric power 

generation company in Kenya and is solely responsible for hydropower generation in the Tana 
River Basin (Baker et al, 2015). KenGen’s benefits from conservation interventions include 
increased water yield, avoided service interruptions, avoided dredging costs for small upstream 
dams, and improved storage capacity. The UTNWF is predicted to increase KenGen’s annual 
revenue by over US$600,000 as a result of increased power generation and avoided shutdowns 
and spillages. 

Government Agencies 
Key government agencies for this region include Kenya’s Ministry of Agriculture, 

Livestock and Fisheries (MALF), the Ministry of Energy & Petroleum (MEP), and the Ministry 
of Health. According to the MALF’s Chief Engineer, “Kenya is currently too dependent on the 
import of food,” and sustainable natural resource management would ensure food security, 
improving the livelihood of Kenyans (KIPPRA, 2007). The MALF is devoted to improving food 
security through commercializing Kenya’s agricultural production system. The MEP is interested 
in programs and legislation that increase energy supply and decrease energy tariffs in Kenya. For 
the Tana River, the MEP focuses on the construction and implementation of existing and future 
dams that benefit communities with hydroelectricity (Moe, 2012). Along with water availability, 
the Ministry of Health is interested in health risks and safe drinking water from the Tana River. 
The Ministry of Health’s Chief Officer stated that “public facilities such as medical practices are 
[often] not sufficient for the number of people living there” (Beukering, 2015). Without enough 
medical facilities and water treatment systems, higher risks of waterborne diseases and health 
issues arise. The Ministry of Health is thus invested in the promise of provision of ample clean 
water. The UTNWF is predicted to improve water quality and decrease waterborne pathogens for 
more than half a million people (TNC, 2015). 

 2.5 Hydrologic Modeling 

Hydrologic models predict how climate change and events like hurricanes and droughts 
will impact water sources. Models use river basin and watershed characteristics like size, shape, 
and water quantity and quality to sdetermine a water source’s depth, flow rate, and area 
coverage. 

Hydrologic models can be simplified into a water budget, an equation that accounts for 
the flows of water into and out of the system (Wang, 2014). For a drainage basin, water inflow is 
equal to the outflow, and a water budget expression breaks down the inflow and outflow to 
individual components based on changes in water storage in the atmosphere, land surface, and 
subsurface. These components account for precipitation, infiltration, evapotranspiration, 
baseflow, and human water demands. Hydrologists have invented a multitude of detailed 
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techniques and technologies to measure and evaluate the individual components of a water 
budget in order to create an accurate simulation of water movement in watersheds or river basins. 
Several datasets are required as inputs for any computer-based hydrological analysis program, 
including drainage basin characteristics such as size, shape, slope, land use, soil type, surface 
infiltration rate, and storage; stream channel characteristics such as the geographic configuration 
of streams in the basin; and meteorological characteristics such as precipitation type, rate and 
amount (MDOT, 2006). In many hydrologic models, the watershed is split into sub-basins. These 
are then split into hydrologic response units (HRUs) based on similarities in land-cover, soil, and 
management (Antonopoulos et al., 2015). After the characteristics are added to the model, the 
programs use equations for each process in the hydrologic cycle to simulate water distribution, 
flow, and quantity in the study area. 

2.5.1 SWAT Case Studies Modeling of the Tana River Basin 

A common tool for hydrologic analysis is the Soil and Water Assessment Tool (SWAT), 
which is used to assess soil erosion and water-management practices in watersheds and large 
river basins (Arnold et al., 1998). SWAT represents components of the hydrological cycle, 
including rainfall, snow-cover and snowmelt, interception storage, surface runoff, infiltration, 
evaporation, lateral flow, percolation, pond and reservoir water balances, shallow and deep 
aquifers, and channel routing. SWAT was used by TNC to inform conservation practices in the 
Tana River Basin during the Water Fund’s deployment. SWAT was also used to understand the 
impacts of contour farming on water and sediment yield in the Thikia-Chania catchment 
(Gathagu et al., 2018) and quantify soil erosion and reservoir sedimentation rates for targeted 
interventions (Hunink et al., 2013). TNC (2015) used SWAT to assess biophysical impacts of 
erosion and flow rates in the Upper Tana after implementing sustainable farming interventions. 

Originally, an updated SWAT model was planned to evaluate TNC interventions for this 
project. The model would examine water quantity and sediment transportation change over time 
in the micro watersheds of interest.  However, constructing and calibrating an accurate model 
can take years. Given the time restraints for this project and the fact that TNC has a dedicated 
team for SWAT modelling, the strategy for evaluating interventions shifted to statistical 
analyses.  

 2.5.2 Conceptual Model of Tana River Basin 
The Upper Tana Nairobi River Basin has multiple inputs, outputs, and uses. A proper 

picture of the Tana and its uses is foundational to understanding and building upon any efforts to 
improve conditions in the basin. In order to gain an accurate understanding of the moving parts 
of the Tana’s water uses, our team developed a conceptual model (Figure 3) which visually 
illustrates these varied components. The conceptual model provides a large-scale overview of the 
status of the Upper Tana River Water Fund and is designed to allow external parties to easily 
understand the dynamics of the Upper Tana River Basin and where the TNC interventions are 
put into place. It should be noted that the model is not geographically based, meaning that the 
flow of the graph does not dictate that its entities are upstream or downstream of one another.  

In addition to the conceptual model, we also created a Feedback Loop Diagram of the 
Upper Tana River Basin to demonstrate how variables in the basin are connected to each other 
(Appendix A).
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Figur e 3: Conceptual Model of the Upper Tana River Basin 
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We created three research questions to guide our project and best help TNC evaluate the 
success of the Water Fund to date. The research questions stated below focus on the objectives of 
understanding land use and cover and its effects on water supply, the effects of climate 
variability, and evaluating the progress of TNC interventions up to date. The results and findings 
of answering these questions can have beneficial implications for the region’s hydrologic, social, 
and economic livelihoods.  

Research Questions: 

1. How do land use and land cover affect water quantity, water quality, and
soil erosion in Kenya’s Upper Tana River Basin?

2. How has and will climate variability affect seasonal water distribution?

3. What are the social and hydrologic impacts of the Water Fund, and how
effective are they?

4.1 Approach 

We used open source data as well as data provided by IBM and TNC to answer our 
research questions. We were granted access from the TNC to proprietary data accumulated from 
stream gauges and weather stations from the Water Fund. The majority of our analysis centered 
around analyzing water level[m], discharge[m3/s], total suspended solids[mg/l], and turbidity 
[NTU] from stream data. Water Level is defined as the total height of the river subtracted by the 
elevation. In this way water level is a measurement of river height at a specific location, with no 
association with a datum. Discharge, or flow rate, is the volume of water passing through a 
specified cross-section of a river for a given unit of time. Total suspended solids, or TSS is the 
total weight of solid particles suspended in a sample of water. Turbidity is the cloudiness of 
water due to suspended particles. We used statistical modeling, mapping software and other tools 
to create our deliverables. Our deliverables consist of a final report, an ArcGIS story map, a data 
dictionary, a spreadsheet of the literature sources we encountered about the Tana River Basin 
and the code used to conduct our statistical analyses. The present effort is part of a long-term 
project that will likely continue after our research. To make our analysis transparent, all of the 
code used will be available for IBM/TNC on IBM’s CloudPak software for future use. 

4.2 Background Research and Literature Review 

We conducted a literature review of past hydrological studies and projects to understand 
the historical background and present state of hydrology in the Tana River Basin. We focused on 
understanding data-driven management of water resources, climate variability, and land use and 
land cover change within the Upper Tana River Basin. We reviewed physiographic and socio-
economic studies done by The Nature Conservancy that laid the groundwork for the Water Fund. 
Combining the reports from our client with the team’s previous literature review gave us a 

3. Research Objectives

4. Methods
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holistic understanding of what has and has not been studied in the Tana River Basin and allowed 
us to identify areas of study that could benefit from further analysis for our team to focus on. 

4.3 Data 

To complete data analysis the team used data on multiple variables, including water 
quality and flow data, meteorological data, and satellite imagery. Data was either publicly 
available or provided by TNC. 

4.3.1 Weather Data 
We used IBM’s Weather Channel API and The European Union’s Copernicus System 

implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) to obtain 
data on precipitation, temperature, relative humidity, wind speed, wind direction and dewpoint.  

Meteorological data can be obtained from The Weather Channel's core and History on 
Demand API, provided by IBM. The data are provided hourly for a specified latitude and 
longitude with a spatial resolution of 0.01° (~1.11 km) from 2015 to 2020. However, the API 
rejects a number of calls exceeding ~250, so the team used data from specific locations described 
by latitude and longitude points.  

Once the team selected rainfall flux data from 1980 to 1985 from The European Union’s 
Copernicus System the files were downloaded as NetCDF (Network Computer Document 
Format) files then converted to CSVs. The data are averaged over (0.5 lat 0.5 long) blocks and 
given in rain flux which is easily converted to milliliters of precipitation. 

4.3.2 Ground Truth Precipitation Data 
To obtain the amount of precipitation that falls in a watershed, hydrologists place rain 

gauges, instruments that measure rainfall, at regular points throughout a catchment area (Salas et 
al., 2014). The Nature Conservancy provided rain gauge data for 32 different stations throughout 
the Upper Tana Basin.Gauged data are generally more precise in capturing absolute daily rainfall 
amounts while satellite rainfall estimates are more accurate in capturing spatial rainfall patterns 
(Antonopoulos et al., 2015).Therefore, TNC’s gauge data have been used for measuring 
intervention effectiveness in the micro watersheds and the satellite data are being used over a 
much larger area and time frame. 

4.3.3 Climate Change Data 
The Intergovernmental Panel on Climate Change (IPCC) provides data on climate change 

that is available for download on climate change through for predictions from Coupled Model 
Intercomparison Project Phase 5 (CMIP5) (Kenya Data, n.d.). The IPCC Data Distribution 
Centre provides information and predictions from four emission scenarios as NetCDF files. The 
team did not end up using CMIP data since CMIP5 data is out of date and CMIP6, which is more 
recent, has not been downscaled for the Tana River region. The code to analyze the CMIP5 data 
is available on the IBM Cloud Pak, though we did not use it in our final analysis. 

4.3.4 Satellite Imagery 
Land cover data was extracted from three global land cover datasets: the MODIS Land 

Cover Type (MCD12Q1 version 6), Copernicus Global Land Cover Collection-3 (CGLS Col-3), 
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and the Africover dataset derived from Sentinel-2 imagery. The temporal and spatial resolutions 
for each dataset vary, with the MODIS dataset available for the longest period of time and 
Sentinel-2 for the shortest. The MODIS imagery has the coarsest spatial resolution, which means 
it provides the least amount of land cover detail. It is available in 500 x 500 meter resolution, the 
Copernicus imagery is available in 100 x100 meter resolution, and the Sentinel-2 imagery is 
available in 20 x 20 meter resolution. The land cover from each satellite dataset was sized to the 
Tana River region and two smaller study sites within the region using Google Earth Engine and 
then imported to ArcMap. From there the number of pixels assigned to each of the land classes 
was determined and the total area for each class for each year from 2001-2019 was calculated in 
Excel. The MODIS imagery is classified using the IGBP Class-Type-1 classification scheme, 
while the Copernicus imagery was pre-classified using a discrete classification method.  

Data from NASA’s Famine Early Warning Systems Network (FEWS NET) Land Data 
Assimilation System (LDAS) Noah Land Surface Model L4 was used to obtain a variety of land 
surface parameters including soil moisture, rainfall flux, surface temperature, and 
evapotranspiration. The FLDAS Noah Land Surface Model L4 dataset contains a series of land 
surface parameters simulated from the Noah 3.6.1 model at monthly 0.10 degree resolution from 
January 1982 to present. The datasets were downloaded as NetCDF files for each month and 
analyzed using R. 

Water Quantity 
Discharge volume, flow velocity, turbulence, and depth all impact water quality in rivers 

(Kuusisto, 1996). Due to a wide variety of limitations, discharge data are not available for a large 
area of the watershed including micro watersheds that were of interest in this study. However, 
water level data acquired from HOBO water level loggers is much more readily available both in 
area (water level data  are readily available for the vast majority of watersheds), and duration 
(water level data date back to at least 2015 for the majority of watersheds). Water level and 
discharge are closely related, and individual measurements can be transformed to a rating curve 
that forecasts future stream flows (USGS Stream Gaging Basics).  

IBM has already coded a way to relate water level and discharge with a power-law 
relationship. The specific formula is as follows: 

𝑄	= 𝐶(ℎ − 𝑎) 
where Q	is discharge, h is elevation, a is effective depth of zero flow, and C are empirical 
constants calculated using a linear regression model. While the formula above results in an 
exponential relationship, when plotted in a log-log space (both x- and y- axes are logarithmic 
scales) the relationship is linear. Due to the limited amount of reliable water flow rate data, the 
relationship was derived using data from only one of the stream gauges. The relationship has yet 
to be applied to the majority of micro watersheds where only water level data are available. 

 For the purpose of trying to identify broad trends, and due to the lack of discharge data, 
water level data acquired from the TNC was used to represent water quantity for the statistical 
analysis of the change in water quantity over time as well as change in water quantity within 
various micro watersheds.   

Water Quality 
Several parameters can be used to measure water quality, including chemical 

characteristics like nutrient concentration as well as physical characteristics like temperature and 
pH. Instruments for measuring water quality in the field include pH meters, thermometers and 
EC meters, which measure conductivity and total dissolved solids (TDS) in water. Measurements 
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of dissolved oxygen (DO) indicate if the water is a good environment for aquatic life and are 
taken with a probe and meter, reported in milligrams of gas per liter of water (Fredette, 2018). 

The TNC acquired water quality data with the Hanna Portable Multi-parameter probe, 
which acts as an accumulation of some of the devices mentioned above. The device measured 
pH, oxidation reduction potential (ORP), Conductivity, DO, Turbidity, temperature, TDS, 
Salinity and GPS coordinates of the sampling site. Limited data is available from this device 
(TNC 2016).There is more abundant data related to total suspended solids (TSS) and turbidity, 
which can be used to represent water quality. Turbidity is the cloudiness of water due to 
suspended particles and is measured by shining a light through a sample and recording the 
particle concentration. It is closely related to TSS, the total weight of solid particles suspended in 
a sample of water. TSS levels were calculated from river water samples using the gravimetric 
method. This procedure involves filtering the solids from the water sample through a 47mm 
glass fiber filter, drying them, and weighing them to determine the total non-filterable residue 
(TNR) of the sample reported as mg/L (TNC 2016). Turbidity was calculated from TSS 
concentration in a similar way that water discharge was calculated from water level, by applying 
a best fit line using a regression model. 

4.4 Data Analysis 

We used IBM Cloud Pak to analyze data. The IBM Cloud Pak stores data in a cloud and 
has built-in notebooks that allow both Python and R scripts for more involved data manipulation. 
Since the scripts and data are stored on IBM servers and not an individual machine, coding and 
data visualization was a collaborative effort where anyone with access to the dashboard can view 
and edit code. Furthermore, IBM Cloud Pak has the capacity for automation, which is beneficial 
for the continual live updating of data as it is collected. Data that can be continuously updated 
includes daily rain gauge data, remote-sensing raw data, technical reports and published 
literature. We added relevant open access data (CMIP6, Weather Channel, & ECMWF) to the 
IBM Cloud Pak, which already contains the vast majority of TNC’s data, and wrote scripts to 
process the data and answer the research questions. 

4.4.1 Research Question 1: How do land use and land cover affect water 
quantity, water quality, and soil erosion in Kenya’s Upper Tana River Basin? 

Due to increased population growth in the Upper Tana Region, TNC reported a trend 
over the past five decades of arable land being converted from forest to smallholder farms. We 
researched how changes in climate and land cover have affected soil quality and agriculture. 

Land Cover Analysis 
To gauge how land cover and land use has affected water quality and quantity in the 

Upper Tana Basin, land cover maps were produced using Google Earth Engine and analyzed in 
ArcGIS. We planned to use Landsat imagery to create annual land cover maps for 1980-2021, 
but this proved time consuming and prone to error due to the difficulty of the classifier algorithm 
in ArcGIS to distinguish fallow agricultural land from barren land and dense agricultural crops 
from forest, grasslands, and savanna. Several datasets with pre-determined land cover are 
available for direct download from NASA’s EarthData and Earth Explorer portals. For this 
analysis, we used imagery from the Terra and Aqua combined Moderate Resolution Imaging 
Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 6 data product, which 
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provides global land cover types at yearly intervals from 2001 to 2019 derived from six different 
classification schemes.  

For the purpose of this analysis, a portion of the MODIS Terra+Aqua Combined Land 
Cover that fit the Tana River region was exported using Google Earth Engine and then the total 
pixels for each land cover class for each year from 2001 to 2019 were identified in ArcMap. The 
MODIS Land Cover dataset produces images at a 463 x 463 meter resolution. Using code 
written in Google Earth Engine (Appendix B) this was extrapolated to 30 x 30 meter resolution,  
which does not affect the total area covered by each class in the final analysis but makes the 
maps produced appear less pixelated. Initially results were obtained for the years 2001-2013 
using the MODIS MCD12Q1 Version 51 product, but NASA replaced this version in 2014 with 
MCD12Q1 Version 6 due to processing errors in classifying broadleaf and cereal crop classes in 
the LAI/fPAR Type3. Version 6 land cover product is thus used in this report. Land cover for the 
same region was also for the Copernicus Global Land Cover dataset (CGLS) obtained for the 
years 2015 to 2019 using Google Earth Engine. This dataset is produced at 100 x 100 meter 
resolution. Additionally, land cover over the same region from the European Space Agency 
Sentinel-2 satellite was obtained for 2016 at 20 x 20 meter resolution. The total area for each 
land cover class was calculated in Excel using the formula: 

𝑡𝑜𝑡𝑎𝑙	𝑎𝑟𝑒𝑎	(𝑠𝑞𝑢𝑎𝑟𝑒	𝑘𝑚) = (#	𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 30𝑚 ∗ 30𝑚)/1000	

All of the land cover datasets used different formulas to identify land cover, leading to 
differences in the final results for each land cover type from each satellite dataset. The code to 
extract the annual land cover from each dataset for the Tana River region can be found in 
Appendix B.  

Soil Moisture and Surface Runoff Analysis 
To improve our understanding of how the changes in land cover and land use affected 

water quality and quantity and soil erosion in the area, the land cover maps we developed 
were compared to other parameters, including surface runoff and soil moisture. Data from NASA 
FLDAS was used for this. Soil moisture data for depths of 0-10cm, 10-40cm, and 40-100cm 
were extracted and mapped for the region. The map for soil was then compared to the land cover 
maps to see how soil moisture patterns compared to the land cover of the area. This gives an 
indication of how land cover change may affect water retention and availability in soil, which 
also affects agricultural production. Similarly, data for surface runoff was extracted and mapped 
for the region before being compared to the land cover maps. Surface runoff is a major cause of 
erosion, which can also decrease water quality in the area. To better see how surface runoff and 
therefore erosion may be changing in the region, the surface runoff data was averaged for each 
year for the entire region and then plotted against time to see if there was any trend over time. 

4.4.2 Research Question 2: How has and will climate variability affect seasonal 
water distribution?  

Understanding climate variability and shifts in wet and dry seasons in the region is 
necessary because anecdotes from people on the ground indicate that seasonal rains are 
becoming less predictable than they have been historically. Being able to understand the 
variability in the pattern of seasonal rains and how it may be changing is crucial for effective 
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farming and water management and preparation for a range of possible outcomes, especially as 
the population in the Upper Tana continues to grow. 

Analysis of CMIP 
To answer this research question, we began by using CMIP5 data for the Upper Tana 

River Basin. While we have access to more than 12 ensembles, due to the nature of Cloud Pak 
uploading nearly 100 files would have been time consuming and used up our data allowance. 
Additionally, UCLA Box Security never approved our application that would have allowed us to 
build an alternate data pipeline. Due to these limitations, we did our preliminary examination 
focusing on the Beijing Climate Center Climate System Model (BCC-CSM2). The data from this 
ensemble was used to compare the 1970-2000 average millimeters of rainfall per day to 2010-
2040 average millimeters of rainfall per day. The code is available in Cloud Pak and specific 
variables can be adjusted (Local and Global Maps in Appendix C). 

CMIP5 data were released and processed between 2010-2014. This makes the data and 
predictions quite old, especially considering the anecdotal report the project team received from 
TNC regarding drastic shifts observed in the past five years. As mentioned, CMIP6 has major 
anomalies that we cannot fix in our time frame. The team did perform a comparison between the 
two ensembles but ultimately based on advice from expert reviews decided to answer this 
question using other means (Comparison available in Appendix C). 

The Weather Channel and ECMWF 
Other means for answering this question included 

IBM’s The Weather Channel API and the EU’s Copernicus 
Satellite’s Rain Flux data provided by ECMWF. These 
systems provide trends in precipitation over time for 
individual sub basins. We have focused our analysis on four 
55.5 km2 plots Equating to half a degree of latitude by half a 
degree of longitude labeled by Block. Block A Latitude (0-
0.5) Longitude (36.5-37) containing most of Aberdare 
National Park and Nyeri. Block B Latitude (0-0.5) Longitude 
(37-37.5) has a large portion of Mount Kenya National Park. 
Block C Latitude (0.5-1) Longitude (36.5-37) including most 
of the Thika Chania watershed and four high priority sub-
watershed stations. Block D Latitude (0.5-1) Longitude (37-
37.5) includes Masiga Reservoir. Figure 4 shows the Blocks 
over the Water Fund’s region. 

ECMWF data was downloaded and transformed from 
NetCDF to CSV. The Weather Channel API provided data in 
CSV format so the team selected four evenly distributed 
points within these 55.5 Km2 plots and averaged them 
creating a data frame that could be compared with the ECMWF file.The team then graphed 
precipitation on a monthly and daily basis with the wet and dry seasons easily distinguishable. 
To determine if there has been a meaningful change in season timing a two-sample t test was 
performed.  

Figure 4:  Map of the four land 
blocks the Upper Tana Water 
Fund has been divided for analysis 

A B

C D
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4.4.3 Research Question 3: What are the social and hydrologic impacts of the 
Water Fund, and how effective are they? 

We analyzed how interventions implemented by the TNC have improved water quality and 
water conservation within specific regions of the watershed and extrapolated the results to the 
entire watershed.  The first step was to identify key interventions the TNC has implemented, as 
well as their specific geographic locations within the watersheds (Section 2.3.2). Due to the large 
amounts of interventions made, limited data on the specific locations to the interventions, and 
confidentiality concerns due to the fact that many interventions are on private property, the 
locations of interventions are generalized and only known at the micro watershed level. As a 
result it was not possible to map the specific coordinates/areas of interventions and conduct a 
site-specific analysis. Instead, data from micro watersheds that were known to have TNC 
interventions were compared to data from similarly sized micro watersheds with no interventions 
that served as a control. Two sets of micro watersheds, shown in the figure below, with high 
priority were chosen due to their relative proximity to one another: the Githambara watershed 
(intervention watershed) and the Karurumo watershed (control). 

Correlation between Rainfall and Soil Moisture

To better understand the effects of climate change and climate variability on agriculture in 
the area, precipitation was compared with soil moisture at different depths. Soil moisture data at 
different depths and rainfall flux data (data for soil moisture and rainfall flux both from NASA 
FLDAS) were plotted against each other to see if there was a correlation between the two 
parameters. The same was done for surface temperature and soil moisture. Both surface 
temperature and precipitation are important factors of climate change and climate variability. In 
order to get a better picture of how both parameters may affect soil moisture and agriculture in 
the region, various models were tested to find the best fit. Different combinations of the rainfall 
flux variable, the surface temperature variable, and the interaction between rainfall flux and 
surface temperature were modeled against soil moisture.  

SoilMoisture =  ꞵ0 + ꞵ1RainfallFlux
SoilMoisture =  ꞵ0 + ꞵ1SurfaceTemperature
SoilMoisture =  ꞵ0 + ꞵ1RainfallFlux + ꞵ2SurfaceTemperature 
SoilMoisture =  ꞵ0  

 + ꞵ1RainfallFlux + ꞵ2SurfaceTemperature + ꞵ3RainfallFlux*SurfaceTemperature 
SoilMoisture =  ꞵ0 + ꞵ1SurfaceTemperature + ꞵ2RainfallFlux*SurfaceTemperature 
SoilMoisture =  ꞵ0 + ꞵ1RainfallFlux + ꞵ2RainfallFlux*SurfaceTemperature 

The Bayesian information criterion (BIC) for each model was calculated in R, and the model that 
best fit the data with the lowest BIC was selected.  
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To analyze water quantity differences, water levels from stream gauges within each 
respective watershed were compared between the two watersheds. The coordinates of the 
Githambara stream gauge are located at (-0.80988, 37.07202), and the Karurumo stream gauge is 
located at (-0.79624, 37.08675). The data was grouped into different time periods for analysis, 
including yearly and seasonal. For the seasonal comparisons water level data ranging from 2015-
2019 was split into a rainy (includes data from both bimodal rainy periods) and dry season.   

T-tests
Firstly, all the data was cleaned by excluding the outliers. Outliers were calculated as any 

data points that were smaller than Q1 - 1.5*IQR and larger than Q3 + 1.5*IQR. Before analyzing 
the data statistically, graphs were plotted to visualize the general trend of both water quantity 
change and water quality change. Specifically, heatmaps were used to analyze water level 
change and scatter plots were used to visualize the general trend of TSS change and turbidity 
change. Next, to run a t-test, the data were zgrouped yearly and annual average changes were 
calculated. The statistical hypothesis test t-test was run to see if there was a significant difference 
between the year 2015 and the year 2019. The time periods were chosen as indicators of the 
beginning and the end of the water fund project, and the data availability for each year was taken 
into considerations as well. Additionally, another set of micro watersheds was chosen and 
analyzed in order to have a more accurate statement on the effectiveness of TNC interventions. 
The micro watersheds were Mbogiti (intervention watershed) and Thika-valley (control 

Figure 5: Location of study sites within the Upper Tana River Basin 
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watershed). The coordinates of the Mbogiti stream gauge are located at (-0.83977, 36.82812), 
and the Thika-Valley stream gauge is located at (-0.79176, 36.80548).  

Analysis of Variance (ANOVA) 
An ANOVA test was run to test if there was a statistically significant difference between 

the Gitahmabara rainy seasons, Gitahmabara dry season, Karurumo rainy seasons, and Karurumo 
dry season datasets. Statistical significance is defined by a p-value less than 0.05. A p-value less 
than 0.05 allows for the rejection of the null hypothesis, which for this study was that the 
difference in mean water level between two micro watersheds was equal to zero. In other words, 
the null hypothesis was that there is no difference in water level between two separate datasets. 
Since the ANOVA test only confirms that there is or is not a significant difference between at 
least two of the datasets, but does not confirm specifically which datasets are significantly 
different, individual t-tests were run between each combination of datasets.   

Multivariate Regression 
Next, continuous variables including precipitation, sum of accumulated weekly 

precipitation, wind speed, and temperature from the weather API, as well as categorical variables 
including the location of each watershed (Githambara or Karurumo) were plotted against water 
level to see if there were any noticeable trends that could be explained with a regression model. 
For any given day the sum of accumulated weekly precipitation, or “clumped” precipitation, is 
defined as the sum of the precipitation rate for the current day along with the precipitation rate of 
the previous six days. This value was considered in order to account for the fact that it takes time 
for precipitation to ultimately runoff into a river. A multitude of factors including storm 
intensity, slope, elevation, distance from river, soil type, etc. all contribute to the runoff time. 
With no accurate way to quantify this time, one week was chosen as an educated guess. It should 
be noted that only dates/times where water level and meteorological data were available were 
considered for this analysis. While interpolation was considered, due to the large gaps in stream 
data (weeks to months) the accuracy of the interpolation would be questionable. Data from the 
weather API was used due to the lack of locally collected data in the regions of interest. Since 
the weather API contains data in multiple geographic coordinates surrounding the region, all data 
points within a two-degree range in both latitude and longitude from the exact location of the 
stream gauges were considered. These data points were then averaged so that there was only one 
data point for each time. Lastly variables deemed to have a significant effect were put into a 
multi-variable linear regression model. The purpose of the linear regression model was to 
quantify an estimate on how much a change in the independent variable (i.e. precipitation and 
location of watershed) had on the dependent variable (water level).   
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Land cover data from the MODIS, Sentinel, and Copernicus datasets was obtained for 
various years in the period between 2000-2019. The three datasets largely agreed on the amount 
of area covered by forest, built-up urban land, and water, but varied widely when classifying 
grasslands, agricultural/cultivated lands, and savannas. This is likely due to the difficulty of 
distinguishing the difference between sparsely vegetated areas from satellite imagery alone. 

Figure 6: Annual land cover change from 2001to 2019 based on the MODIS MCD12Q1 
classification algorithm. 

5.1 Research Question 1: Land Cover Change Over Time 

5. Results
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Figure 7: Landcover in the Upper Tana in 2016 from two different land cover datasets, 
MODIS MCD12Q1 version 6 and the Sentinel 2 Africover daatset  
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Appendix B has graphs that show more detailed land cover change. The area covered by 
grassland is the largest in the MODIS land cover classification. Land cover does not change 
drastically over the time period from 2001 to 2019. Forest and cropland cover about the same 
amount of area.  

A more detailed look at land cover for 2015-2019 in the intervention and control sites 
examined later in this paper is shown below. 

In addition to land cover, we investigated other climatic and environmental factors such 
as soil moisture that can help provide some insight on how land cover affects land surface 
parameters and water availability and quality in general for the region. The following figures 
show soil moisture for the Upper Tana River Basin at different depths (0 to 10 cm, 10 to 40 cm, 
and 40 to 100 cm) for March 2021 at a resolution of 0.1°x 0.1°.  

contr
ol 

treatme
nt 

Figure 8: Land cover for 2015-2019 in Karurumo (control) and Githambara (treatment) from the 
Copernicus Gobal Land Cover Classification 
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When the figures for soil moisture are compared to the land cover map of the Upper 
Tana for the same month, March 2021 (Appendix B), we can see that for all of the depths 
analyzed, areas with more forest cover have a higher soil moisture content. Additionally, soil 
moisture seems to moderately increase at greater depths. 

Comparing land cover with surface runoff can provide insight on erosion and water 
quality in the region. When looking at the general trend of surface runoff over time (Figure 10), 
surface runoff seems to be increasing, indicating there may be an increase in erosion leading to 

Figure 9: Soil Moisture in the Upper Tana River Basin at 0-10cm, 10-40cm, and 40-100cm depths from NASA FLDAS 

Figure 10: Average annual surface runoff (mm/day) from 1982 to 2020 
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worsening water quality. However, variation in the amount of runoff each month also seems to 
have increased, which could be related to factors other than land cover change, such as the 
increased variability in precipitation observed in Research Question 2. 

The following figures depict the distribution of average runoff for the periods 2000-2005 
and 2015-2020. 

The figures show how runoff is greatest in areas with high elevation (Appendix C), 
which makes sense as these areas get higher amounts of precipitation and water naturally flows 
from areas with higher elevation to lower elevation. The figures also show that overall, there was 
an increase in runoff during the 2015-2020 period compared to the 2000-2005 period. The 
increase in runoff may not be related to land cover change because as indicated earlier, land 
cover did not change by a significant margin. It may instead be due to other factors such as 
changes in patterns in precipitation described in the following section. 

5.2 Research Question 2: Effects of Climate Variability 

The following images are daily precipitation levels from the four land blocks in the 
Upper Tana River basin: Block A (0°N-0.5°N and 36.5°E-37°E); Block B (0°N-0.5°N and 37°E-
37.5°E); Block C (0.5°N-1°N and 36.5°E-37°E); Block D (0.5°N-1°N and 37°E-37.5°E). Map of 
the land blocks is shown in Section 4.4.2 

Figure 11:Average surface runoff (mm/day) for 2000-2005 and 2015-2020 
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 Figure 12: Daily precipitation levels for four land blocks in the Upper Tana River Basin for 1989-
1985 and 2015-2019  
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Kenya has two wet seasons called the long rains (March - May) and short rains (October - 
December) The graphs show the long rains in a dark blue and the short rains in cyan. The 
measurements of precipitation do change on the y-axis but remain relatively constant in similar 
blocks, especially for the 1980-1985 period. While the dry and rainy seasons for the 2015-2019 
period did not necessarily shift from the 1980-1985 period, the graphs suggest that the magnitude 
of rain events during the wet seasons have increased, which may be attributed to global climate 
change which is hypothesized to not affect the amount of rainfall but rather increase the severity 
of storms in shorter periods of times.  

From the analysis using t-tests, we can conclude that there is a significant difference in 
precipitation levels measured by the ECMWF system for the five-year periods of 1980-1984 and 
2015-2019 because the p-value remained below 0.05 allowing the rejection of the null hypothesis 
that these systems are the same. This was found in the data with the exception of the wet Season 
in Block C which had a p-value of 0.13 indicating no significant difference. 

Table 2: T-tests Comparing ECMWF precipitation data from two distinct five-year time periods 
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More graphs for exploring climate variability including monthly precipitation and 
precipitation from 2015-2019 for the four blocks using data from The Weather Channel can be 
found in Appendix D. 

To analyze the effects of climate variability on agriculture in the region, we looked at the 
relationship between precipitation and soil moisture, which is an important factor for agricultural 
productivity in the region. The following figures show soil moisture and rainfall flux mapped 
individually for East Africa (Upper Tana River Basin outlined in red). The data to create these 
maps are from NASA, and the month January 1982 is used as an example. 

Figure 13: Rainfall Flux and Soil Moisture in East Africa for January 1982 (Upper Tana River Basin outlined in red) 

When plotting precipitation rate and soil moisture over time on a single plot, the 
fluctuations in soil moisture and precipitation seem to be related (Figure 14). 

We plotted soil moisture against precipitation from 2015 to 2020 to get a better 
understanding of their relationship (Figure 15) using data from NASA and the Weather Channel 
for the entire region. A moderate positive correlation (r = 0.6874) was found between the two 
parameters, meaning that increased precipitation was correlated with higher soil moisture 
content, which is an intuitive result.
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Soil moisture was plotted against the precipitation from 2015 to 2020 to get a better 
understanding of their relationship (Figure 15) using data from NASA and the Weather Channel 
for the entire region. A moderate positive correlation (r = 0.6874) was found between the two 
parameters, meaning that increased precipitation was correlated with higher soil moisture 
content, which is an intuitive result.  

Figure 14: Monthly precipitation rate and soil moisture in the Upper Tana 
River Basin from 2015 to 2020 

Figure 15: Monthly Average Soil Moisture vs. Precipitation Rate (2015 -2020) 
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Exploring the correlation between precipitation and soil moisture in the Upper Tana 
River Basin can provide insight on how changes in precipitation from climate variability may 
affect soil moisture and in turn agricultural production. NASA data for soil moisture and rainfall 
flux at a resolution of 0.1°x 0.1° from January 1982 to March 2021 was used to create heat maps 
of soil moisture and rainfall correlation (R-value) at depths of 0 to 10 cm, 10 to 40 cm, and 40 to 
100 cm for the Upper Tana River Basin, which is outlined in white (Figure 16). 

The figures show that at greater depths, the correlation between soil moisture and 
precipitation decreases. Additionally, when compared to land cover maps from the previous 
section, we can see that the forested areas at higher elevation have lower correlations between 
soil moisture and rainfall. This may be because a greater proportion of precipitation is 
intercepted by forest vegetation before hitting the 
land surface or because forests at higher 
elevations typically have lower temperatures, 
more frequent rainfall, and less evaporation, so 
individual rain events have less of an effect on 
soil moisture. Additionally, this may be related to 
variances in soil type (Appendix C), but that 
relationship would need to be explored further 
before drawing any conclusions.  

In addition to precipitation, surface 
temperature is also an important factor to consider 
for climate variability and climate change. We 
looked at surface temperature to see how it would 
affect soil moisture and agriculture in the region. 
From the heat map in Figure 17, we can see that 
the correlation between soil moisture and surface 
temperature is very weak and insignificant in 
most parts of the region, although in the areas 
with higher elevation, there is a moderate 
negative correlation. 

Figure 16:  Soil Moisture and Rainfall Correlation (r) in the Upper Tana River Basin at 0-10cm, 
10-40cm, and 40-100cm depths 

Figure 17: Surface temperature and surface 
moisture correlation 
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To take a closer look at soil moisture (m3/m3) with both surface temperature (K) and 
rainfall flux (kg/m2s), we tested various models and found that the most appropriate regression 
model included rainfall flux as a parameter as well as the interaction between rainfall flux and 
surface temperature, but not surface temperature individually. The regression equation is: 
SurfaceMoisture = 0.2174 + 0.0006311RainfallFlux - 0.0211RainfallFlux*SurfaceTemperature 

From the model, we can see that greater amounts of precipitation will increase soil 
moisture, but effects of precipitation will vary depending on temperature. In addition, higher 
temperatures will lower the amount that precipitation increases soil moisture. 

5.3 Research Question 3: Efficacy of Interventions 

The heatmaps in Figure 18 show the general trend of water level change in Githambara 
(T) and Karurumo (C) from 2015 to 2020. The water level in Githambara displays an obvious
increasing trend over time while there is only a slight change in water level in Karurumo.

Figure 19 shows the general trend of water level change in Mbogiti (T)  and Thika-Valley 
(C) from 2015 to 2020. It is difficult to observe any obvious patterns from looking at the overall
trend of water level change in both watersheds. Further analysis in t-test is needed to analyze the
difference in years.

Figure 18: Changes in water level in Karurumo (C) and Githambara (T) from 2015 to 2020 

Figure 19: Changes in water level in Thika-Valley (C) and Mbogiti (T) from 2015 to 2020 
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The table above summarizes the p-value for variables within each watershed including 
water level, TSS, and turbidity from 2015 to 2019. The t-test was used to analyze water level 
change, while the Mann-Whitney test was used to analyze TSS and turbidity change. The Mann-
Whitney test was preferred due to its higher accuracy with datasets containing a small sample 
size. The results showed that for all variables, the p-values in treatment watersheds are smaller 
than 0.05, which means there is a significant difference between 2015 and 2019. And all p-values 
in control watersheds are larger than 0.05, indicating the difference between 2015 and 2019 is 
not significant. By comparing the two sets of watersheds, it can be concluded that treatment sites 
have had a significant change in water quantity and quality, shown in the graphs below as an 
increase in water level and decrease in TSS and turbidity, whereas the control sites have had no 
obvious change.  

Table 3: Results for t-tests analyzing water quality and quantity 
in control and treatment sites 

Figure 20: Changes in annual average TSS and Turbidity for Thika-Valley (C) and   Mbogiti (T) from 
2015 to 2019 
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The graphs above show annual changes in TSS and turbidity from 2015 to 2019 for 
Mbogiti (intervention watershed) and Thika-Valley (control watershed). Mbogiti started off with 
higher TSS and turbidity values. Over the five year time span, TSS and turbidity values showed a 
significant decrease, which is also confirmed by analyzing with t-test, while both values in 
Thika-Valley remained the same.  

Figure 21: Boxplot of seasonal water level in Githambara and Karurumo 

The boxplot above compares the distribution of water level data for Githambara and 
Karurumo for rainy and dry seasons. It was used to visualize the data before running an ANOVA 
test to notice any initial trends.  It should be noted that there are few discharge values higher than 
2.5 m but for visualization purposes the y-limit of the graph is set at 2.5m to better showcase the 
majority of the data. From the graph it can be seen that variation in each micro watershed has a 
greater effect on water level than variation in season. Additionally, it can be seen that Karurmo 
has higher average water levels than Githambara in both the rainy and dry seasons. 

The results of the ANOVA test are presented above. The null hypothesis was that the 
difference in mean between every group (rainy-season Githam, dry-season Githam, rainy-season 
Karurumo, and dry-season Karurumo) was zero. In 
other words the mean discharge for all four groups 
were the same. An extremely low p-value (p<.05) 
allows us to reject the null hypothesis and 
conclude that there is a statistically significant 
difference between location and season on 
discharge. Additionally, an extremely high F-value 
confirms that the variance between groups is 

Table 4: Results of ANOVA analyzing water 
level data for Githambara and Karurumo for 
wet and dry seasons. 
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significantly higher than variance within groups. This further confirms our conclusion to reject 
the null hypothesis. Logically this makes sense since the rainy season and dry season should 
yield significantly different discharge rates. The next step was to conduct individual t-tests to 
find specifically what variables are significantly different (Appendix E). 

The results of the individual t-tests are presented above. An extremely low p-value 
(p<0.05) allows us to neglect the null hypothesis and confirm that the difference in mean water 
level between all four variables was statistically significant.  While knowing that location and 
precipitation affect water level was important, the next step was to quantify how much they 
affect water level. A multi-variable linear regression model was used to quantify this. Before 
running the model an assortment of graphs and figures were developed to visualize the data in 

Table 5: Results of individual t-tests analyzing water level in Githambara and Karurumo for wet and 
dry seasons 

Figure 22: Daily averaged precipitation plotted against water level in Karurumo (C) from 2015 
to 2020 
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order to confirm the accuracy of the linear regression model as well as better interpret the results 
of the model. 

The graph above displays daily averaged precipitation plotted against water level data in 
Karurumo. Precipitation data was taken from various coordinates surrounding the watershed; 
these values were averaged based on location. The hourly location averaged data was then 
averaged again based on the day to limit the amount of data points and make the graph easier to 
read. From this graph it appears that extreme weather events (high precipitation storm events) 
have an effect on water level. It should also be noted that rain events fluctuate yearly as well as 
seasonally as evidenced by the significantly higher amount of daily averaged rainfall events 
above 0.5 mm/year from 2018-2019 as compared to other years. Lastly, it should be noted that 
there is a gap in data for the majority of 2017.  

The graph above displays daily averaged precipitation plotted against water level data in 
Githambara. From this graph it appears that extreme weather events (high precipitation storm 
events) have an effect on water level in Githambara as well as Karurumo. Similar to Karurumo, 
Githambara is missing data for the majority of 2017.  

Figure 23: Daily averaged precipitation plotted against water level in Githambara (T) from 2015 
to 2020 
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The collection of graphs above show the Precipitation vs. Water Level for Githambara 
and the weekly “clumped” precipitation rate vs. water level for Githambara. While the majority 
of data is clustered towards the left side of the x-axis (majority of days saw 0 mm/hr of rain), an 

Figure 24: Precipitation vs. Water Level for Githambara and the weekly “clumped” precipitation rate 
vs. water level for Githambara (Treatment) 

Figure 25: Precipitation vs. Water Level for Karurumo and the weekly “clumped” 
precipitation rate vs. water level for Karurumo (Control) 
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extremely low p-value (p < 0.05)  in each graph allows us to reject the null hypothesis and 
confirm that the relationship between the two variables is significant. Every figure showed a 
slight positive correlation between precipitation and water level. Additionally, for every season, 
the rain clumped correlation was slightly higher, and p-value equal to or lower than the regular 
precipitation value, and thus was chosen to be used in the linear regression model. In 
Githambara, it appears that there is a slightly higher correlation between water level and 
precipitation rate in the wet season when compared to the dry season. 

Similarly for Karurumo, every figure showed a slight positive correlation between 
precipitation and water level, and for every season, the rain clumped correlation was slightly 
higher, and p-value equal to or lower than the regular precipitation value (Figure 25).  In 
Karurumo it appears that there is a slightly higher correlation between water level and 
precipitation rate in the dry season when compared to the wet season. This is the opposite result 
that was observed in Githambara. 

The figure above takes the weekly “clumped” Precipitation vs. Water Level for 
Githambara (red) and Karurumo (yellow) and places them on top of one another. From this graph 
it was reaffirmed that on average Karurumo has higher water levels than Githambara. It can also 
be seen that Karurumo’s water level increased at a higher rate with increase of precipitation.   

Figure 26: Weekly “clumped” Precipitation vs. Water Level for Githambara (red) and Karurumo 
(yellow) 
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The collection of graphs above show water level plotted against wind speed in both 
Githambara and Karurumo for wet and dry seasons. Wind speed was considered a variable of 
interest due to its effect on evaporation. Typically, higher wind speeds contribute to higher 
evaporation rates. While the correlation values for Karurumo were in the same order of 
magnitude as the precipitation vs water level graphs, Githambara yielded values an order of 
magnitude lower. Additionally, a visual inspection of the Githambara and Karurumo graphs 
shows water level values spaced evenly across the wind speed axis suggesting that wind speed 
has no effect on water level. Due to the extremely low correlation values in Githambara wind 
speed was not considered for the linear regression model.  

Figure 27: Wind Speed vs. Water Level for Karurumo (Control) and Githambara (Treatment) in 
wet and dry seasons  
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Figure 28:  Temperature vs. Water Level for Karurumo (Control) and Githambara (Treatment) 
during wet and dry seasons 

The collection of graphs above show water level plotted against temperature in both 
Githambara and Karurumo for wet and dry seasons. Temperature was considered a variable of 
interest because it plays a key role in thermal expansion (slight increase in volume of water due 
to increased separation of water molecules) and evaporation. The distribution of the data for 
every graph yields very low correlation values, which is evident from a visual inspection of the 
data. Also, the wet season data for Githambara wet season data yielded a p-value > 0.05 meaning 
the null hypothesis cannot be rejected and the difference in the two variables is not significant. 
For these reasons temperature was not considered in the linear regression model.  

Table 6: Results from multivariable linear regression of water level with watershed and precipitation    
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The result of correlation testing resulted in a linear model considering clumped precipitation and 
location of watershed. The formula of the model is as follows: 

Water Level =	ꞵ0	+	ꞵ1Precipitation +	ꞵ2Watershed 

where	ꞵ0 is the y intercept and ꞵ1 and ꞵ2 are the weights given to precipitation and watershed 
respectively. Since watershed is a categorical variable (Karurumo or Githambara) dummy 
variables were assigned where Githambara = 1 and Karurumo = 0. 

The linear regression model yielded statistically significant p-values for both 
precipitation and watershed, meaning it is reasonable to conclude that the slope of the interaction 
is not 0, thus both variables have an effect on water level.  The result of the linear regression 
yields the following formula: 

𝑊𝑎𝑡𝑒𝑟	𝐿𝑒𝑣𝑒𝑙	 = 0.5535424	 +	 0.0104793𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛	−	0.1350478𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 

A visual analysis of the boxplots showed that on average Karurumo had higher water 
levels than Githambara. The weight of the ꞵ2	 quantifies this difference in average water level as 
0.1350478m. In other words the average water level is 0.1350478m higher in Karurumo when 
compared to Githambara. (the magnitude of this value is all that is important as the sign switches 
based on the classification of the dummy variable i.e. which variable was assigned a 1 or 0). 

Clumped precipitation has an extremely small contribution to determining water level 
with a weight value of roughly 0.01. This suggests that water level remains relatively constant 
even with large increases in precipitation. Additionally, it suggests precipitation alone does not 
accurately account for changes in water level and other variables should be considered in future 
studies.  

Previous graphs displaying the change in precipitation and water level suggested a higher 
correlation between water level and precipitation than predicted from the linear regression 
model. The linear model combined data from every year into two seasonal variables. However, 
as seen in previous graphs precipitation and water level varied significantly from year to year. 
Additionally, the model considered the combination of water level and precipitation data from 
both watersheds in its analysis, which may have contributed to errors in the final value of  ꞵ1.  
However, as seen in previous graphs precipitation and water level varied significantly from year 
to year. These two oversimplifications may help explain why the multiple R squared and 
adjusted R squared values which assess the linearity of the model were both very low with 
values of 0.1834. This means that the linear regression model does a poor job estimating a linear 
relationship between water level and precipitation and watershed location. For this reason the 
model should not be used for any quantitative purposes and should only be considered for 
observing broader trends in the data. 

6.1 Implications 

Comparison of land cover change over time in each of the separate land cover datasets 
(MODIS and Copernicus) did not reveal large changes in land cover over the period 2001-2019 
but this was likely due to the large spatial resolution size of the pixels. Additionally, the three 
different land cover datasets differed in the classification of grassland, shrubs, and cropland. 
Classifications of these groups are difficult to do using only remote satellite data and require 

6. Discussion
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validation with in situ measurements. Multiple land cover datasets were used to gain a 
comprehensive understanding of land cover in the region, as the datasets each use different 
algorithms to classify pixels. The Copernicus and Sentinel-2 land cover datasets are the most 
similar (see Appendix B) while the MODIS land cover dataset classified much of the area that is 
likely smallholder agriculture as grassland. The emerging narrative is that the increasing 
population in the region is leading to forest being converted to smallholder farms (TNC 2015); 
however this trend did not emerge in analysis of the three land cover datasets, and future projects 
should endeavor to procure higher quality data to substantiate this finding.  

Analysis of ECMWF data concluded that there is a significant difference between 
precipitation levels between 1980-1984 and 2015-2019. While the rainfall data did not yield any 
noticeable seasonal changes, the severity of storm events within the rainy season seem to have 
increased over time, which could be related to global climate change. This finding helps to 
provide quantitative evidence to back up the anecdotal observations from locals about changes in 
precipitation.   

Analyzing soil moisture with precipitation and surface temperature distributions found a 
positive correlation between soil moisture and precipitation, especially in areas with less forest 
cover, as well as a moderately negative correlation between soil moisture and temperature. There 
seems to be greater soil moisture retention in areas with higher forest cover, especially at greater 
depths. This may be important to consider for local farmers in the area when deciding how to 
treat soil and what agricultural techniques to use. In addition, increases in surface runoff were 
found over time, which could lead to greater erosion and thus worse water quality in the area.  

Climate change and population growth are both predicted to have effects on water flow 
and quality in the region. The IPCC projects that precipitation will become more variable with 
increases during wet seasons and decreases during dry seasons while temperature is projected to 
increase for all seasons for the region (Mango et al., 2011). Because precipitation is positively 
correlated with soil moisture, with more variable precipitation, variability in soil moisture may 
also increase, leading to difficulties for agriculture especially in a region reliant on flood 
recession farming. During rainy seasons, increased rain intensity and floods may bring about too 
much water and moisture, while during dry seasons, increased droughts and higher temperatures 
may lead to a lack of water and soil that is too dry for crops. This amplifies the need for 
appropriate interventions and water management strategies in the region. 

By comparing the change in water quantity and water quality for two intervention sites 
and control sites, data showed that there has been an increase in water level and a decrease in 
TSS and turbidity in both intervention sites. 

From the statistical analysis comparing Githambara and Karurumo it is reasonable to 
conclude that the location of the site has the greatest influence on water level when compared to 
meteorological factors. Additionally, water levels in Karurumo were higher on average than 
those in Githambara. Karurumo water levels appeared to be more sensitive to increases in 
precipitation when compared to Githambara. In other words as rainfall increases Githambara 
water levels had a lower increase than Karurumo. This finding is important when considering 
that one of the goals of TNC interventions was to limit sediment runoff into streams during the 
rainy seasons. It is important to consider that comparing water level on the microshed level has 
inherent error. There are an assortment of factors that can contribute to variances in water level 
besides TNC interventions including slopes, elevation, land cover, human interventions etc. For 
this reason, while we can reasonably assume from our results that the TNC interventions have 
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improved water quantity and water quality significantly during the project time, more detailed 
analysis is required to determine the total effect of the Water Fund’s interventions. 

6.2 Limitations 

The team completed this project working entirely remotely and separately due to the 
COVID-19 pandemic, which caused many limitations due to the nature of not being on the 
ground in Kenya. Rather than being able to experience conditions first hand in the Upper Tana 
Basin, the team has relied on literature, data provided by the IBM and TNC, and open access 
data. There was very little on site data collection before the TNC initiated the water fund, and as 
a result the majority of the data was collected very recently (2015 or after). This made it difficult 
to analyze the state of the watershed before the TNC intervened, and as a result historical 
baseline records were largely ignored when analyzing the TNC’s interventions. The data 
provided by TNC and IBM primarily consists of meteorological data and stream characteristics, 
and there are many temporal gaps and irregularities within the data. The timing of meteorologic 
and hydrologic data collection by ground instruments in the watershed is sporadic, with long, 
irregular intervals between data collection periods. That prevented us from accessing details 
about  some of the micro watersheds and hindered some of our analysis and evaluation on the 
efficacy of those interventions put in place by TNC. Furthermore, much of TNC’s data on 
specific interventions and their geographic coordinates were unavailable, or classified. This 
made understanding the interventions in place difficult, and required creativity when deciding 
how to assess intervention efficacy. 

Much of the data used that was not from IBM or TNC, such as data for soil moisture, 
runoff, and landcover, was from models developed from satellite imagery. Satellite data is most 
effective when models can be calibrated with on site measurements. Specifically, it is difficult to 
classify what is grassland, savanna and agricultural land based on satellite imagery alone, since 
from the image a pixel of cultivated land may easily be mistaken for grassland or savanna. For 
example, a land cover map can be corrected by physically examining whether the classifications 
of the model actually represent what they intend too. Being limited to relying solely on the 
satellite data with no calibration invites higher probability of errors. The analyses we have 
performed could be strengthened in the future by verifying the satellite data with on the ground 
measurements in the Upper Tana River Basin. 

In addition, the team faced limitations due to time constraints and complexities of certain 
models, which prevented us from having an even more comprehensive analysis. These 
limitations include the difficulties of downscaling climate projections from CMIP, which could 
have provided more insight on climate change and climate variability in the region, as well as the 
inability to use SWAT in the time we were given for the project which may have allowed us to 
develop a more thorough hydrologic assessment of the region.  

6.3 Recommendations 

More consistent data collection on variables related to water quality, including TSS and 
turbidity can strengthen the analysis of water conditions and the interventions put in place by 
TNC. To help with future projects on the Water Fund, creating a repository of relevant shape 
files that will help consultants trim maps to specific regions would be beneficial. Expanding the 
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range of land surface data collected and verifying satellite data with on site measurements would 
also help and make future analysis easier. Through this project, the team recorded code of tests 
performed to analyze data such as comparing water level with precipitation and the presence of 
interventions. Other models, such as the rating discharge curve were already made before we 
joined the project. Applying these analyses to all the other micro watersheds in the Upper Tana 
River Basin would help to develop a more thorough view of conditions in the region. 

Due to time constraints there were a number of analyses the team wanted to pursue but 
were unable to complete. For example, assessing the validity of the weather station's rain data 
when compared to on the ground measurements would help justify the usage of the data in areas 
where local collection was lacking. Additionally, considering more variables such as different 
land cover type percentages in Githambara and Karurumo may be a good way to improve the 
linear correlation for the regression model mentioned previously in the discussion section. This 
would likely require on the ground land cover observations as the pixels derived from available 
satellite datasets are not small enough to provide information at the individual watershed scale. 
While soil moisture, land cover, and runoff were all considered in this analysis important 
characteristics such as soil type, and sloper were largely left out. In order to gain a more holistic 
understanding of soil erosion these factors should be taken into account. The Food and 
Agriculture Association (FAO) has an open source platform on their website that allows for the 
download of shapefiles containing soil type data and metadata for the entire globe. Similarly, 
The International Soil Reference and Information Centre (ISRIC) has a database with data and 
metadata on soil type specific to Kenya (KENSOTER).  Additionally, slope values can be 
extracted from a Digital Elevation Model (DEM). An open source DEM which is available for 
Kenya with 30 m resolution is available courtesy of  The Regional Centre for Mapping of 
Resources for Development (RCMRD).  

Based on our results and evaluation of the efficacy of the interventions at the micro 
watershed scale, we would recommend the Water Fund to continue to expand its deployment of 
interventions. Further analysis of the interventions can be conducted by applying the analytical 
techniques we used to more local areas could help evaluate water conditions and the effect of 
interventions with more granularity. To analyze location specific results of interventions, the 
exact locations of the interventions are necessary. For a more in depth study of the interventions 
it would be beneficial for specific data collection devices such as stream gauges to be 
implemented both downstream of the intervention (dependent variable), and upstream of the 
intervention (control). This would allow more local case studies to be conducted. Our project has 
laid the groundwork for future research in the Tana River Basin by creating a comprehensive 
literature repository of past studies in the region and access to code in the IBM CloudPak. This 
code can also act as a starting point for analysis of future data that will be collected. 

Because the interventions put in place by TNC are meant to improve water quality and 
quantity for the benefit of local farms and communities, it is also important to include the voices 
of local people when studying the effects of the interventions. Communicating directly with local 
farmers in the Upper Tana River Basin and listening to their experiences with water and 
agriculture before and after the interventions were put in place would be highly beneficial. First 
hand accounts of experiences with the interventions could provide valuable insight on whether or 
not the interventions are actually effective in the community, and if the results from analysis of 
data match with the communities experiences. This could be completed through surveys or 
interviews. In addition, because the interventions are meant to benefit local communities, it may 
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be beneficial to look beyond the effect that the interventions have on water resources to other 
social factors such as financial gain for the local farmers or improved quality of life. 

6.4 Deliverables 

We stored all code and data used in a repository to document our work. We used the IBM 
Cloud Pak database to store this information, creating a water data platform that ensured our 
project’s replicability. The code repository will be uploaded onto a GitHub page. Furthermore, 
we have developed this final report, recounting all our research findings to be presented to our 
clients at the completion of the project. We have also created visual communication products in 
the form of multiple ArcGIS StoryMaps, one for each research question, to present our data and 
findings in a way suitable not only to our clients but also to local stakeholders, including farmers 
and government representatives. The table below describes each of the deliverables we have 
created. 

Table 7. Description of Created Deliverables 

Deliverable Description 

Hydrological 
Assessment 

• Use water flow data and perform analysis to determine change in water availability of
the basin based on micro-watersheds, comparing control sites and experimental sites.

• Use discharge to compare the basin’s hydrological characteristics before and after
TNC intervention

• Use soil moisture to analyze hydrological characteristics of specific sub basins. A
comparison will be done between areas TNC has and has not intervened

• Create models and graphs describing the findings, and statistical significance
Found in Section 5.3
Found in Appendix E

Conceptual Model • A flow-chart type model for overall understanding of the watershed
• Providing inputs and outputs within the watershed
• Goes hand-in-hand with our Data Dictionary for getting those unfamiliar with the

Upper Tana River Basin up to speed.
Found in Section 2.5.2 

IBM Cloud Pak for 
Data (Code 
Repository)  

• IBM Cloud Pak for Data will enable integration of data and assets created
• Upload relevant open source and open access data (IPCC, TNC Box, literature review)

to IBM Cloud Pak to create a centralized online platform with information on water
funds

• Use remote sensing (LandSat, Sentinel 2 &3) and machine learning to fill data gaps in
TNC Box and DHIS2 client database

• Python/R scripts to record methodology and meaningful insights for future reference
• Easily updatable dashboards that can be displayed publicly (TNC or UCLA website)
• The code is compiled onto GitHub to ease sharing capabilities, and provide resources

for future work
Found in Section 5.3 
Found in Appendix D 
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Data Dictionary • A collection of sources and datasets used to understand the Upper Tana River Basin,
and used to develop our code and geographical products

• Dataset information includes: Datapack name, dates of relevance, uses, and file type.
• This will provide any future groups who build on our work a clear pathway to the data

we had available.
• Transparency with our data also encourages replicability of our work, and the

verification of our findings regarding the efficacy of TNC interventions, and
implications and recommendations for the Upper Tana River Water Fund moving
forward.

Final Report • Research findings/trends and comparison with outside sources
• Describe the implications, future recommendations, and limitations of the project.
• Visualizations of quantitative/qualitative findings through graphics and maps
• Annotated bibliography of literature sources relevant to watershed management in the

Tana River region to provide continuity to the Water Fund. This will include reports
by TNC and studies by other researchers of how climate change and land use change
have affected hydrology in the past and how they are predicted to affect it in the future

Communication 
Products 

• ArcGIS StoryMaps to provide simple to use, interactive web-based storytelling
products presenting data & findings for our clients.

• Presentation of current status, impact of interventions, future projections
Found in Appendix F
• Shiny web application, an interactive website, presents data and findings of research

question 3
• The shiny application consists of a server. R script and a UI. R script. Clients can

easily modify the website content by changing the R script.
Found in Appendix G

Land cover maps • Analysis of satellite data to determine change in land characteristics of the basin based
on land use change over time

• Annual land cover maps for 2001-2019 using the MODIS MCD12Q1 Version 6 IGBP
land cover classification scheme, 463x463 m resolution resampled to 30x30 m
resolution

• Sentinel-2 MSI land cover map for 2016
• Copernicus GCLS version 3 land cover maps for 2015-2019
• Copernicus CGLS land cover maps for a 100 meter buffer area surrounding the

Githambara and Karurumo watersheds
Found in Section 5.1 
Found in Appendix B 

Climate variability 
projections  

• Clear figures representing the changes in precipitation in recent years
• Projections on future precipitation and climate change, providing perspective on what

farmers are to expect in the near future.
• Created using The Weather Channel data and spatio-temporal temperature and

precipitation data
Found in Section 5.2 
Found in Appendix D 

A key goal of our project is creating communication products conveying project data and 
results. We worked with our clients to determine the most effective platform for communicating 
results to the stakeholders, with the overall goal of prioritizing the needs of the client and the 
communities residing in the Upper Tana River Basin. Our clients emphasized creating an easily 
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digestible narrative that informs key stakeholders and public audiences within the Water Fund 
boundaries of our research’s implications. We utilized ArcGIS Online’s StoryMap feature to 
create interactive websites (Appendix F) to inform stakeholders of river catchment conditions 
and build a fuller picture of socio-ecological interactions in the watershed. More specifically, 
each research question is presented in separate story maps, and outlines our team’s 
methodology and the overall significance of the research questions and objectives.  

7. Conclusion

The Upper Tana Nairobi Water Fund established by the Nature Conservancy to ensure 
water security in the coming decades.  After analyzing climate data, hydrological data, soil 
moisture data and remote sensing imagery, we concluded that the Water Fund should continue 
encouraging farmers in the basin to use sustainable farming techniques like agroforestry and crop 
terracing. Additionally, more data should be collected to better understand changes in land cover, 
precipitation and soil moisture. Methods are documented and replicable. Despite impediments 
and limitations during our project, we have used multiple methods of statistical analysis and 
remote sensing to determine that TNC interventions are effective at securing water availability in 
the Upper Tana River Basin.  

We have recommended certain actions for TNC, and for the Upper Tana River Water 
Fund to adopt and implement moving forward. These recommendations are expected to further 
improve water fund efficacy, and to streamline further analysis. We have compiled all of our 
work into multiple deliverables, each serving a unique purpose.  
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Appendix A: Feedback Loop Diagram for Tana River Basin
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Appendix B: Code for Creating Land Cover Maps and Additional 
Analysis

Google Earth Engine Code for extracting land cover data: 
Copernicus Global Land Cover CGLS-LC100 collection 3: 
https://code.earthengine.google.com/41363504870e4855456194de05aeaaf1 

MCD12Q1.006 MODIS Land Cover Type Yearly Global 500m: 
https://code.earthengine.google.com/0f1fd40fd24cbb252e11726da2d87351 

Code for creating buffers around latitude and longitude points to extract land cover data for 
control site regions: https://code.earthengine.google.com/b4eca963b6242f3898c5d2bdac1444c6 
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Appendix C: Physical Characteristics of the Upper Tana River Basin

Elevation Model for the Upper Tana Watershed 
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Soil types in the Upper Tana River Basin 
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Global End of Century Change for the months 
of December, January, and February. 

This compares the CMIP 5 and CMIP 6 data 
focusing on percent change between the 30 
year blocks of 1970-2000 and 2010-2040 in the 
months of December, January and February 
with 95% confidence level. The goal is to 
provide the viewer with a qualitative 
understanding of the differences between the 
two CMIP data sets.   

Appendix D: CMIP Analysis and Further Graphics Examining Climate 
Variability

Kenyan image of CMIP 5 
precipitation change between 
1970-2000 and 2010-2040, 
focused on the months of 
December, January and 
February with 95% confidence 
level. Based on this graphic the 
Upper tana is projected to have 
very little precipitation change 
but may see some reduction in 
the northern section 
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ECMWF Monthly Precipitation Graphs 2015-2019 and 1980-1985 
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The Weather Channel 2015-2020 Monthly Precipitation Graphs 
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The Weather Channel 2015-2020 
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Appendix E: Statistical Tests Analyzing Water Level in Githambara and 
Karurumo

##################################################################################### 
> # ANOVA Test
>
> Githam_Karuru_ANOVA <- a .... [TRUNCATED] 

> summary(Githam_Karuru_ANOVA)
        Df Sum Sq Mean Sq F value Pr(>F)     

Season           3  840.2  280.06   13521 <2e-16 *** 
Residuals   110473 2288.2    0.02        
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

##################################################################################### 

##################################################################################### 
> # Individual t-tests
#####################################################################################
>
> # t-test Rainy Season between .... [TRUNCATED] 

> Rainy_Ttest <- t.test(Discharge ~ Season, data = Rainy_season, mu = 0, conf = .95, var.eq = FALSE, paired =
FALSE)

> Rainy_Ttest

Welch Two Sample t-test 

data:  Discharge by Season 
t = -124.61, df = 52036, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
-0.1550640 -0.1502615
sample estimates:
mean in group Rainy_Season_Githam mean in group Rainy_Season_Karuru

        0.4350048                         0.5876675  

##################################################################################### 

##################################################################################### 
> # t-test dry Season between Githam and Karuru
>
> #create appropriate data table 
> Dry_season <- filter(Githam_Karuru_stacked, str_length(Githam_K .... [TRUNCATED] 

> Dry_Ttest <- t.test(Discharge ~ Season, data = Dry_season, mu = 0, conf = .95, var.eq = FALSE, paired =
FALSE)

> Dry_Ttest
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Welch Two Sample t-test 

data:  Discharge by Season 
t = -146.09, df = 44837, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
-0.1804953 -0.1757163
sample estimates:
mean in group Dry_Season_Githam mean in group Dry_Season_Karuru

 0.3606085  0.5387143 
##################################################################################### 

##################################################################################### 

> # t-test Githam between Rainy and Dry seasons
>
> Githam_Ttest <- t.test(Discharge ~ Season, data = Final_Data_Githam, mu = 0, conf = .95, var.eq  .... 
[TRUNCATED] 

> Githam_Ttest

Welch Two Sample t-test 

data:  Discharge by Season 
t = -64.449, df = 47360, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
-0.07665876 -0.07213373
sample estimates:
mean in group Dry_Season_Githam mean in group Rainy_Season_Githam

        0.3606085                         0.4350048  

##################################################################################### 

##################################################################################### 

> # t-test Githam between Rainy and Dry seasons
>
> Karuru_Ttest <- t.test(Discharge ~ Season, data = Final_Data_Karuru, mu = 0, conf = .95, var.eq  .... 
[TRUNCATED] 

> Karuru_Ttest

Welch Two Sample t-test 

data:  Discharge by Season 
t = -38.055, df = 49720, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
-0.05147446 -0.04643186
sample estimates:
mean in group Dry_Season_Karuru mean in group Rainy_Season_Karuru

 0.5387143  0.5876675 
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##################################################################################### 

##################################################################################### 
#  Multi-variable linear Regression Results 
##################################################################################### 
Residuals: 

 Min       1Q   Median       3Q      Max 
-0.39899 -0.09357  0.00946  0.07951  1.73753

Coefficients: 
        Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.5535424  0.0010411  531.71   <2e-16 *** 
Rain_clump   0.0104793  0.0003076   34.07   <2e-16 *** 
Marker_num  -0.1350478  0.0014662  -92.11   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.1538 on 44401 degrees of freedom 
Multiple R-squared:  0.1834, Adjusted R-squared:  0.1834 
F-statistic:  4988 on 2 and 44401 DF,  p-value: < 2.2e-16



70 

Climate Variability and Seasonal Water Distribution 

Appendix F: Link to Story Maps

Link to Collection of Story Maps: https://arcg.is/1yDrPy 

Land Cover and Land Use 



71 

Evaluating TNC Interventions in the Upper Tana River 
Basin
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Appendix G: Link to Shiny Web Application

https://ucla.shinyapps.io/ibmtnc_watershed/ 
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