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A B S T R A C T   

The increasing frequency and duration of extreme heat events prompts questions regarding mitigation proposals 
and evaluation of current strategies such as cooling centers. Cooling centers may be formally designated or 
informally used spaces such as indoor shopping centers that the public use as a refuge from heat. Smartphone 
location data show how a sample of the population moves during the day, what behavioral adjustments they 
apply in response to heat events, if cooling centers are being used, what factors correlate with use, and whether 
centers are serving vulnerable populations. We compared spatial patterns of smartphone locations in Los Angeles 
County between paired extreme heat days and control days (n = 12) in summer 2017. Cooling centers were used 
1.1–1.7 times longer during heat events, depending on type, with formal cooling centers used longer. Informal 
centers, however, were used more (90% of visits). Distance to nearest public transit stop was inversely related to 
the number of center visits. Vulnerable communities, as measured by the Social Vulnerability Index (SoVI), used 
centers located in neighborhoods with higher vulnerability scores more. Use of smartphone data to assess activity 
space of individuals has substantial potential for evaluating mitigation strategies in the face of increasing 
extreme heat events.   

1. Introduction 

The frequency, intensity, and duration of extreme heat events have 
been increasing and this trend is projected to continue, triggering larger 
societal impacts, and increasing adverse health outcomes (Matthews 
et al., 2017; Tuholske et al., 2021). Even with the committed target of 
limiting global temperature increase to below 2 ◦C above pre-industrial 
levels, the frequency of extreme heat events is expected to increase, 
impacting more than 350 million people in megacities by midcentury 
and increasing cases of heat stress. Adaptation and mitigation strategies 
for communities are therefore essential, potentially reducing one-fourth 
of extreme heat mortalities (Jones et al., 2015; Kalkstein et al., 2022; 
Matthews et al., 2017). Extreme heat events are a hazard, constituting a 
leading weather-related cause of death in the United States (Howe et al., 
2019), and their effects vary regionally depending on factors including 
acclimatization, air conditioning availability, socio-economic charac-
teristics, and existing vulnerabilities. Mitigation strategies also vary 
from cooling centers and air conditioning management, to altering shifts 
in work schedules, neighbor check-ins, and behavioral controls (Turner 

et al., 2022; Vaidyanathan et al., 2019). Successful risk management 
requires an assessment of the efficacy and applicability of such mitiga-
tion strategies. 

Cooling centers are one of the mitigation strategies often mentioned 
in the context of heat events (Turner et al., 2022), which are effective in 
providing a cool environment to reduce the adverse effects of extreme 
heat (Fraser et al., 2018; Widerynski et al., 2017). Accessible, indoor, 
air-conditioned spaces appear to be especially important for individuals 
without air conditioning at home, but very few studies have assessed the 
effectiveness of this strategy. A study of cooling center accessibility in 
New York City showed that a third of residents are within walking dis-
tance to centers and accounting for transit access, about 80% of popu-
lation have access to centers, but rural heat-vulnerable areas had lower 
accessibility (Nayak et al., 2019). A network analysis of public cooling 
centers in Los Angeles County, California, and Maricopa County, Ari-
zona, found that centers are clustered instead of an accessible distribu-
tion between vulnerable communities (Fraser et al., 2018). Another 
evaluation of cooling centers in Maricopa County through surveys at 53 
facilities indicated that 78% of respondents visited the centers for the 

* Corresponding author. LaKretz Hall, Suite 300, Los Angeles, CA, 90095-1496, United States. 
E-mail address: longcore@ucla.edu (T. Longcore).  

Contents lists available at ScienceDirect 

Applied Geography 

journal homepage: www.elsevier.com/locate/apgeog 

https://doi.org/10.1016/j.apgeog.2022.102821 
Received 30 August 2022; Received in revised form 8 November 2022; Accepted 8 November 2022   

mailto:longcore@ucla.edu
www.sciencedirect.com/science/journal/01436228
https://www.elsevier.com/locate/apgeog
https://doi.org/10.1016/j.apgeog.2022.102821
https://doi.org/10.1016/j.apgeog.2022.102821
https://doi.org/10.1016/j.apgeog.2022.102821
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apgeog.2022.102821&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Applied Geography 150 (2023) 102821

2

primary services of the facility rather than heat-refuge, a quarter of 
visitors used public transportation to reach the center, and most visitors 
learned about centers through word of mouth or by seeing the center 
(Berisha et al., 2017). 

Certain socio-economic conditions have been associated with lack of 
access to resources and the susceptibility to suffer harm from hazardous 
events, including heat events (Cutter et al., 2003; Füssel, 2007; Harlan 
et al., 2013; Reid et al., 2009).Vulnerability of individuals to extreme 
heat events have been mostly studied in relation with hospitalizations 
and mortality counts, with a public health focus (Chuang & Gober, 2015; 
Reid et al., 2009; Uejio et al., 2011). The identified factors that have 
been associated with heat-related impacts include socio-economic dis-
parities, occupational exposure, ethnicity, language barriers, nursing 
home residents, age, and living conditions (Hansen et al., 2013; Klenk 
et al., 2010; Reid et al., 2009). The Social Vulnerability Index (SoVI) is a 
place-based measure of an area’s ability to prepare for, respond to, cope 
with, and recover from an environmental threat such as heat. It in-
corporates 27 indicators for the census tract level analysis and has been 
applied in study of several hazards and mitigation plans, where its 
multi-dimensional place-based construct provides the ability to trace the 
contributing factors to vulnerability at each location (Cutter et al., 2003; 
Cutter & Morath, 2013; Rufat et al., 2019). The accessibility of cooling 
centers in relation to existing vulnerabilities and an assessment of the 
centers’ use has not previously been tested, and mobility data can pro-
vide insights on how accessible formal and informal centers are in 
different neighborhoods according to the underlying vulnerabilities. 

Numerous studies have used mobile device data in the context of 
COVID-19 pandemic and mobility patterns (Badr et al., 2020; Grantz 
et al., 2020; Xiong, Hu, Yang, Luo, & Zhang, 2020). The application of 
GPS data, geotagged social media posts (like Twitter) and mobile phones 
in the context of hazards and disaster management has precedence as 
well, for example in relation to hurricane evacuations, environmental 
hazards like airborne pollutants, and wildfire evacuation (Gulliver & 
Briggs, 2005; Hatchett et al., 2021; Hong et al., 2021; Martin et al., 
2017; Xing et al., 2021; Yabe et al., 2022; Yu et al., 2018). Such litera-
ture suggested a predictability in human movements after and during 
extreme events (Lu et al., 2012). Use of mobile phone data in heat risk 
and mitigation evaluations has room to grow. The very few current 
studies include, for example, Holec et al. (2021) who performed a heat 
risk assessment based on mobile phone data used as a measure of pop-
ulation density for Bratislava, Slovakia, or Yasumoto et al. (2019) who 
studied heat exposure based on mobility patterns in urban and suburban 
populations in Dhaka, Bangladesh. 

The dynamic nature of mobility data is valuable in understanding the 
kinetic characteristics of heat exposure and people’s activity space 
during the day. The use of mobile phone data and associated calculation 
of individual activity spaces avoids the known limitations of using 
administrative spatial units and the modifiable areal unit problem 
(MAUP), from either scale effect (variation in results from analysis at 
differing spatial resolution) or zoning effect (variation in results from 
regrouping of areas at a scale) (Kwan, 2009; Openshaw, 1984; Riva 
et al., 2009; Tobler, 1989). Another related problem has also been 
attributed to the uncertain geographic context problem (UGCoP) in 
terms of the spatial and temporal uncertainty in the areas and duration 
in which individuals are exposed to certain conditions (Kwan, 2012), 
which also calls the attention to modifiable temporal unit problem 
(MTUP) in aggregating or segmenting the data (Cheng & Adepeju, 
2014). Exposure measures are often derived from areal units that are 
static and defined administratively (Kwan, 2009). However, the 
area-based analysis of exposure can lead to the known problem of 
ecological fallacy and making inferences about individuals based on the 
aggregated data. Therefore, a non-static representation of exposure to 
environmental conditions would be more favorable (Kwan, 2009). The 
application of mobility data provides more information on where people 
spend time and their activity space throughout the day and enables a 
“people-based understanding of exposure and context” (Kwan, 2009). 

Especially in the case of extreme heat, people are exposed to the outdoor 
conditions of many different neighborhood contexts besides their own 
residential area, and the time they spend outside, the paths they take 
during the day, and the places they visit are more indicative of exposure 
levels. In addition to outdoor space use behavior change, the use of 
cooling centers during extreme heat days, in comparison with paired 
control days with moderate temperatures, could be derived from the 
analysis of mobility data to gauge the efficacy of this mitigation method 
including its location. 

We investigated the use of cooling centers during extreme heat 
events in Los Angeles County, California, US, which has been tackling 
the heat burden as a combination of extreme heat events within an 
urban heat island, while facing a changing pattern of seasonal higher 
temperatures as well (Broadbent et al., 2020; Hulley et al., 2020; 
Kalkstein et al., 2018; Taha et al., 2015). The excess heat-related mor-
tality in Los Angeles is projected to increase from two to three times in 
one scenario to five to seven times under another scenario by the 2090s, 
even including a 20–25% buffer for acclimatization (Hayhoe et al., 
2004). Therefore, understanding and evaluating currently available and 
adopted heat mitigation solutions in Los Angeles County is essential for 
effective planning and preparing for upcoming changes in it and other 
similarly situated megacities. The operation and management of cooling 
centers in the County is performed by the County Department of Public 
Health, County Chief Sustainability Office, and the County Office of 
Emergency Management (Chu et al., 2021). We consider cooling centers 
to include both formally designated locations like libraries, parks, and 
community centers provided by the County or other governmental 
agencies, and informal cooling centers such as commercial spaces, pools, 
and shopping centers that people could use for heat relief (Berisha et al., 
2017; Fraser et al., 2018). We evaluate the use and accessibility of 
cooling centers in Los Angeles County during heat event days, 
comparing visits to the centers on hot days with paired control days with 
moderate temperatures (12 paired days from July and August of 2017), 
assess the social vulnerability of the surrounding neighborhood of 
cooling center locations and users’ presumed residence location, and 
investigate the potential effects of distance from centers to users’ resi-
dence and to closest transit stop on cooling center use. 

2. Methodology and data 

2.1. Mobility data 

More than 24 million recorded locations of mobile device users in Los 
Angeles County for the months of July and August 2017 were acquired 
from Outlogic, a private location data provider that collects data on 
consenting users of third-party mobile phone applications with location 
information. The mobility data for six paired extreme heat days and 
control days were selected based on historical weather data (these 
paired control-hot days are: July 1st-July 8th, July 2nd-July 9th, July 
26th-August 2nd, July 27th-August 3rd, August 23rd-August 30th, and 
August 24th-August 31st). The samples were selected from summer of 
2017 because it had several record-breaking heat waves with highest 
fatality in the past decade (Tracking California, 2022) and is prior to 
COVID-19 pandemic, thus the mobility patterns are not arising from 
COVID-19 mitigation policies. Using Python for programming, a subset 
of daytime users from 12:00 p.m. to 4:00 p.m. was used to compare the 
behavioral patterns of cooling center use based on device locations that 
intersected with cooling center building footprints. The sample data 
were refined to remove records with horizontal accuracy of >25 m and 
eliminate points with recorded speeds of ≥3 miles per hour or more (to 
keep walking speeds or stationary conditions) (Bohannon & Williams 
Andrews, 2011; Peng et al., 2020; Rambhatla et al., 2022). The census 
tract associated with the nighttime resting location of each device was 
extracted by mapping consistent locations of mobile phone devices from 
1:00 a.m. to 5:00 a.m. and intersecting with census tract polygons, using 
ArcGIS Pro 2.9 and Python programs. After removing duplicates and 
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screening for speed and accuracy, the dataset included 143,241 unique 
users across Los Angeles County for the 12 days. 

2.2. Cooling centers 

Formal cooling centers are public facilities for heat relief, such as 
libraries and recreation centers, which are either provided by the County 
of Los Angeles and designated by its Department of Public Health or 
designated by one of the 88 cities in the county. Informal cooling centers 
were defined as commercial spaces or buildings that people could use for 
heat relief. We focused on shopping centers, pools, and recreation cen-
ters that had not been formally designated as cooling centers. The 
database for cooling centers in Los Angeles County was partially pro-
vided by the Los Angeles County Chief Sustainability Office for formal 
County centers, while we developed the layer of formal non-county 
centers and the informal centers, which are now available online as 
indicated in the data statement. Formal cooling centers were classified 
as parks, libraries, and senior and community centers operated by Los 
Angeles County, or non-county government agencies, while informal 
centers included pools, shopping centers, and recreation centers. The 
location of cooling centers was intersected with building footprint 
polygons (from Los Angeles Region Imagery Acquisition Consortium 
(LARIAC),2017 data) in ArcGIS Pro 2.9 to build a layer of cooling center 
buildings footprints. Cooling center occupancy was calculated based on 
the number of unique device locations (pings) in a center during a given 
hour and then standardized by cooling center area and total pings on the 
sample day. The ratio of pings in a center type to total pings was used to 
assess duration, and to present longer duration with a larger value, the 
duration indicator is equal to: 1 - (unique pings/total pings). The pre-
sumed residence location of cooling center users was extracted from the 
matched user identification code with the device resting location at 
night, which returned 29,430 unique cooling center users across Los 
Angeles County on the 12 study days (2,134 for formal centers and 27, 
982 for informal centers, where 686 used both). As a test for the 
accessibility of centers, the coordinates of public transportation stops 
(bus, rail, and subway) in LA County (from Los Angeles County Metro-
politan Transportation Authority, 2022) was compared with the cooling 
center locations in ArcGIS Pro 2.9 to measure the Euclidean distance 
between the centers and the nearest bus stop. The threshold used for 
defining walking distance is 0.25 miles (about 402 m) that is commonly 
used for studies in the U.S. (Yang & Diez-Roux, 2012). The distance 
between cooling centers and the resting location of nighttime mobile 
phone users was also calculated as a measure of the distance between 
users’ potential residence to the centers, which is calculated using the 
geodetic distance. 

2.3. Social Vulnerability Index (SoVI) 

The vulnerability scores used here follow the methodology for Social 
Vulnerability Index (SoVI) (Cutter et al., 2003), and were computed for 
the census tracts in Los Angeles County using the raw data from ACS 
5-year estimates for 2017 (to match the year of mobility data). The SoVI 
factors explain 72.4% of the variation in input data (Components details 
are provided in Table 1). The 27 indicators of SoVI (Cutter & Morath, 
2013) are calculated from the raw ACS data, then normalized by 
z-scores, and components of a Principal Component Analysis (PCA) with 
Varimax rotation, and then are integrated with assigned cardinality 
based on vulnerability contribution of factors to produce the SoVI 
scores. The layer of SoVI scores was intersected with the cooling center 
polygons to extract the vulnerability scores for the center’s location. 
Additionally, the resting location during night (1:00 a.m. to 5:00 a.m.) 
for mobile phone users who had visited the cooling centers was 
extracted to identify the vulnerability of users’ residence and compare 
with the cooling centers they visited, as another measure of accessibility. 

2.4. Statistical analysis 

The paired days of extreme heat day and control days were compared 
with tests of significance in difference of means, using SPSS Statistics 28 
software (t-test and ANOVA) and correlations. The distance decay model 
is also tested with different regression curve fitting models in SPSS and 
the Power Model had the highest R-Square and closer fit. The JMP Pro 
16 statistical software was used for data exploration, visualization, and 
analysis. 

3. Results 

The mobile phone users sample included more than 176,000 unique 
devices (from more than 24 million recorded location points), which 
refinements for accuracy reduced to 143,241 unique devices across Los 
Angeles County with the presumed residence census tract of each device 
user. Of this sample, 20.5% used cooling centers (either formal or 
informal) on the control or heat days, with 1.5% using formal centers 
and 19.5% using informal centers. In comparison with residents who did 
not use cooling centers, center visitors were from neighborhoods with 
lower income, higher age average, more mobile home residents, and 
higher percent of Hispanic and Asian residents (significant difference (p 

Table 1 
Components and summary results of Social Vulnerability Index (SoVI) 2017 for 
Los Angeles Countya.  

Factor Description % Variance 
Explained 

Dominant Variables 

1 Poverty, Ethnicity 
(Hispanic), and 
Education 

26.119% % Hispanic 
% With Less than 12th Grade 
Education 
% Female Headed Households 
Linguistic Isolation 
% Employed in Service 
Occupation 
Per Capita Income (Negative 
loading in PCA) 
% Households Earning over 
$200,000 annually (Negative 
loading in PCA) 
Median Housing Value 
(Negative loading in PCA) 
Median Gross Rent (Negative 
loading in PCA) 
% Civilian Unemployment 

2 No automobile 
access, and Renters 

11.021% % Housing Units with No Car 
% Renters 
% Poverty 
% Children Living in Married 
Couple Families (Negative 
loading in PCA) 

3 Dependence and Age 
(Elderly) 

8.981% % Households Receiving Social 
Security Benefits 
% Population under 5 years or 
65 and over 
Median age 

4 Female, and Race 
(African American) 

6.183% % Female Participation in 
Labor Force 
% Female 
% African American 

5 Race (Asian) 5.803% % Asian 
6 Nursing home 

residents 
5.175% Nursing Home Residents Per 

Capita 
7 Mobile home 

residents 
4.354% % Employment in Extractive 

Industries 
% Mobile Homes 
% Unoccupied Housing Units 

8 Race (Native 
American) 

4.165% % Native American  

a Variables with lower than 0.5 coefficient threshold in the PCA’s rotated 
component matrix are not included in the summary table of components (i.e., 
the variable for people per housing unit). 
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< 0.001) shown in an independent samples T-test for equality of 
means). Visits to formal centers were mainly to libraries and formal 
cooling centers (48% to county or non-county centers, 51.7% to li-
braries, 1.7% to parks, where 1.4% have visited more than one type) and 
visits to informal centers were nearly all to shopping centers (98%), with 
1.8% to recreation centers, 0.5% to pools, and 0.3% having visited more 
than one type. From the subset of formal cooling center users (2,134 
unique devices), 54% visited cooling centers on the control day and 63% 
visited on heat event day; while for the subset of informal cooling center 
users (27,982 unique devices), 58% visited the centers on the control 
day, and 75% visited on heat day (686 unique devices have visited both 
formal and informal centers). Therefore, the number of cooling center 
visits on heat days increased, with the percent increase being about two 
times higher for informal centers. 

For all center types, the visit duration ratio was longer on heat days 
versus control days with a significant difference (p < 0.001) in an in-
dependent samples T-test for equality of means, indicating that visitors 
will stay longer in centers on hot days, especially for formal county 
centers and parks, and informal recreation centers (Table 2). 

Detailed results are described in the following sections with respect 
to vulnerability of cooling center locations, vulnerability of cooling 
center visitors’ residence location, and comparison results between 
control and heat event days. 

3.1. Neighborhood vulnerability of cooling center locations 

Formal cooling centers are located mostly in more socially vulner-
able areas, while informal cooling centers are uniformly distributed 
between all vulnerability levels. However, vulnerable groups with no 
access to automobiles and renters are less covered by county libraries 
and parks. For both county and non-county (i.e., city) libraries, there 
seems to be a lack of access for Hispanic populations and lower-income 
households, but city-run libraries are more accessible to households 
without cars in comparison to county ones. Parks, either run by the 
county or cities, cover low-income neighborhoods, but are missing for 
households without a car, renters, and Asian communities. For the 
informal cooling centers, while the distribution of the total vulnerability 
score follows a normal distribution across centers, shopping centers are 
less available in Hispanic, low-income neighborhoods, and households 
without a car, also pools are less accessible for elderly population, Asian 
and Native American communities (Fig. 1). 

3.2. Cooling center users’ residence vulnerability 

According to the resting location of mobile phone users during 
nighttime who have visited cooling centers during the day, the potential 
residence of our sample indicates that the plurality of cooling center 
users reside in medium vulnerability neighborhoods (47%), with a 
slightly higher representation of lower vulnerability areas with 29% 

residents (24% living in high vulnerability census tracts). These results 
are similar to the distribution of census tract population across Los 
Angeles County with 48% in medium, 29.5% in low, and 22.5% in high 
vulnerability groups. There are only 36 census tracts without a resident 
from our sample of cooling center users (from 2326 populated census 
tracts in Los Angeles County, with population), which are mostly in low 
vulnerability areas with higher-income populations (10 of the tracts are 
in high vulnerability category due to higher number of nursing home 
residents). Also, about 1.3% of cooling center users (i.e., 380 unique 
devices), do not reside in Los Angeles County and their nighttime 
location is outside the county. The average of social vulnerability factor 
values for the presumed residence location of cooling center users show 
that users are coming from neighborhoods which have a slightly higher 
percentage of elderly, Asian, and Hispanic population, but lower per-
centage of nursing home and mobile home residents. 

3.3. Cooling center use: heat event vs. control days 

Comparing unique user locations in cooling centers on hot days 
versus control days shows that 41% of the visits are only on heat event 
days, and 39% are only on control days, while 20% have visited in both. 
The number of visits on heat day and control day are highly correlated 
(Spearman’s rho of 0.87, p < 0.001). All center types have a higher 
number of unique visitors on heat event days than control days (Fig. 2); 
however, the difference in total center visits is not statistically signifi-
cant for either formal centers (p = 0.204), or informal ones (p = 0.592) 
in an independent samples T-test for equality of means. The Levene’s 
test for equality of variances also does not show a significant difference, 
and the independent samples’ effect sizes with either Cohen’s d or 
Hedges correction, does not show a substantial difference either (i.e., d 
< 0.2). 

Most of the visited cooling centers are not in the same census tract of 
our sample’s residence location (95.6%), which is also seen in the 
pattern of number of centers’ visitors that is not correlated with the 
population of the center’s location tract but is moderately and signifi-
cantly correlated with the population of visitors’ residence tract 
(Spearman’s rho of 0.41 for control day and 0.32 for heat day, p <
0.001). The vulnerability scores of cooling center users on control days 
and heat days are moderately correlated (Spearman’s rho of 0.35, p < 
0.001) based on their residence neighborhoods. The vulnerability score 
of the cooling center location has a significantly moderate correlation 
with vulnerability of visitors’ residence location for formal centers 
(Spearman’s rho of 0.31 for control day and 0.28 for heat day, p < 
0.001), but the association is not significant for informal centers. The use 
of centers across the sample of users who reside in higher vulnerability 
areas, varies, where elderly and age dependent populations, or Asian 
communities, use formal County centers more in medium to high 
vulnerability areas during heat days, while lower-income, or households 
without a car would use formal non-county centers more in low 

Table 2 
Cooling centers in Los Angeles County and visits per heat day and control day.  

Center Type Number of Centers Total Area (acres) People per acre Visit Duration Ratio (1 - unique IDs/total 
visits) 

Control day (Std. Err.) Heat day (Std. Err.) Control day (Std. Err.) Heat day (Std. Err.) 

Formal County Centers 57 22.68 9.94 (1.28) 12.94 (1.71) 0.33 (0.021) 0.51 (0.013) 
County Libraries 38 18.97 9.45 (1.64) 6.16 (1.82) 0.33 (0.028) 0.38 (0.032) 
County Parks 8 2.74 4.75 (1.49) 3.97 (2.56) 0.25 (0.148) 0.43 (0.175) 
Non-County Centers 316 118.10 14.66 (0.91) 15.53 (1.50) 0.33 (0.003) 0.41 (0.005) 
Non-County Libraries 209 82.49 13.30 (1.31) 12.70 (0.91) 0.34 (0.006) 0.37 (0.004) 
Non-County Parks 45 13.29 11.98 (1.63) 11.74 (1.69) 0.31 (0.031) 0.38 (0.018) 

Informal Shopping Centers 324 1,692.45 9.04 (0.39) 9.32 (0.30) 0.44 (0.006) 0.49 (0.001) 
Recreation Centers 202 77.63 11.66 (1.05) 11.51 (0.54) 0.28 (0.011) 0.40 (0.005) 
Pools 84 25.40 13.23 (1.35) 13.46 (1.46) 0.29 (0.015) 0.37 (0.014) 

All Centers 1,283 2,053.75 10.89 (1.23) 10.82 (1.39) 0.41 (0.003) 0.47 (0.001)  
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Fig. 1. Cooling center types (A) distribution across Los Angeles County, with (B) Social Vulnerability Index (SoVI) scores of the center’s locations, and (C) 
decomposed components of SoVI of the center’s location. Uncertainty by standard error of data variability is shown. 

Fig. 2. Visits to (A) formal and (B) informal cooling centers by vulnerability scores of both visitors’ residence and location of cooling centers (Quintile and Medians 
are marked); Total distance from visitors’ residence to (C) formal and (D) informal cooling centers by vulnerability scores of both visitors’ residence and location of 
cooling centers (Standard errors marked). 
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vulnerability areas on hot days. The visitors of centers located in low 
vulnerability areas are coming from higher vulnerability residents 
significantly more on hot days (p = 0.029), but visitors of centers in 
other vulnerability levels do not show a statistically significant 
difference. 

Distribution of cooling center visits on heat days versus control days, 
in comparison with walkability to centers from the resting location of 
visitors (i.e., potential residence) varies between different cooling center 
types (Fig. 3-B); however, for all centers, the percent of visits within 
walking distance decreases on heat days in comparison with control 
days. This change in pattern of center visits may suggest that individuals 
would not choose to walk during periods of extreme heat and walk-
ability is not an impetus for accessibility of cooling centers as heat deters 
people from outside spaces. Additionally, the distance between cooling 
centers and nearest public transportation is tested as another measure of 
accessibility (Fig. 3-A, 3-C), which shows a clear trend of distance decay 
as number of visits decreases with increase in the distance to the nearest 
transportation stop, for both control and heat days. The relationship 
between social vulnerability score of the cooling center’s location and 
the distance to the nearest public transportation is not statistically sig-
nificant. However, the trends suggest that visits are less frequent on heat 
days for centers farther from public transportation stops, which is more 
observable for centers in moderate vulnerability, suggesting that middle 
income individuals are more reliant on public transportation access. 

Regardless of the social vulnerability score of the presumed resi-
dence of a mobile device user, the total distance between visitors’ resi-
dence to a cooling center is higher on heat event days versus control 
days, and the maximum distance is increased for both formal and 
informal centers (Fig. 4), indicating that people are willing to travel 
longer distances to get to a center across all vulnerability groups. This 
difference in distance on a hot day is not, however, statistically signifi-
cant for formal centers (p = 0.540) or informal centers (p = 0.625), in a t- 
test for difference of means. The total distance traveled to centers is 

highly correlated for heat days and control days (Spearman’s rho of 
0.81, p < 0.001), showing a similar pattern across centers, where the 
distance decay model for both follows the same power function as well 
(Fig. 4, Table 3). Visits to formal centers are more localized as the 
percent visits is higher for those living closer to the centers with a slight 
increase on heat days, which is also indicated by the fitted distance 
decay inverse power functions (Fig. 4 - C and D). The difference between 
distance decay models for formal and informal centers follows previ-
ously identified patterns of travel distance by trip purpose (Yang & 
Diez-Roux, 2012), which in the case of informal cooling this trend is seen 
for shopping centers regardless of day temperatures (i.e., control day or 
heat event). The distance from centers to nearest public transportation 
did not have a significant association with the distance between visitors’ 
residence and the centers. 

Considering the underlying vulnerabilities, the informal cooling 
center users traveled relatively longer distances to centers located in 
medium or low vulnerability tracts on hot days. The total distance be-
tween residence locations of visitors to informal cooling centers is about 
10 times higher than the distance to formal centers, which is mainly due 
to the distance to shopping centers. Total distance from visitors’ resi-
dence to shopping centers does not change much from control day to hot 
days. The social vulnerability score of visitors’ residence has a weak 
negative significant correlation with the distance between visitors’ 
residence and the visited cooling center for formal centers (Spearman’s 
rho of − 0.14 for control day and − 0.17 for heat day, p < 0.001), but the 
relationship is not significant for informal centers, suggesting that 
vulnerability level of visitors is inversely related to the distance to the 
formal centers (i.e., longer distance to formal centers is an impediment 
in access for higher vulnerable populations). The residents of lower 
vulnerability areas would travel a longer distance on hot days to go to 
pools (informal center) that are in low to medium vulnerability neigh-
borhoods, but more vulnerable residents only travel longer to the pools 
in high vulnerability tracts, which might be related to the working 

Fig. 3. (A) Distribution of cooling centers by walking distance to the nearest public transportation stop; (B) Percent of cooling center visits within walking distance 
by center type, for control day and heat day; and (C) Number of visits to cooling centers by the distance to nearest public transportation stop, for control day and 
heat day. 
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location of individuals. These variations are not significant, and the only 
significant difference is in the vulnerability level of cooling center visi-
tors (based on their residence) on hot days (p = 0.032), showing that 
residents of highly vulnerable neighborhoods would visit cooling cen-
ters more on hot days. 

4. Discussion 

We found that about one fifth of the sample population in Los 
Angeles County have used formal or informal cooling centers. Nearly 
90% of the cooling center visitors used informal centers and the majority 
of these were shopping centers. Therefore, publicly available cooled 
spaces, like commercial spaces, are visited more frequently, which is an 
available adaptation solution for heat refuge. Devising and providing 
effective incentives for owners and managers of air-conditioned com-
mercial spaces to allow their use by vulnerable residents during extreme 
heat events regardless of whether those visitors are paying customers 

would be an adaptation policy that provides cooling without the delays 
of long-term construction or tree-planting. 

4.1. Neighborhood vulnerability and cooling center visits 

The overlaying of mobile phone users’ location with the underlying 
vulnerability of neighborhoods, complements the anonymous data of 
mobile phone users by providing a range for the sample’s vulnerability 
measures based on their presumed residence community characteristics 
and the location of cooling centers. There is some level of uncertainty in 
whether our sample falls within the range of vulnerability scores 
measured for their residing neighborhoods, but it provides a general 
overview of the distribution of resources in relation to communities’ 
attributes, and whether centers are disproportionately distributed across 
different populations. The results indicated that higher vulnerability 
populations use cooling centers more, which was previously suggested 
by surveys or census data in Los Angeles County, California and 

Fig. 4. Number of visits to cooling centers by cumulative distance between all visitors’ residences and each cooling center visited, on control day and heat day, (A) 
for Formal Centers, and (B) for Informal Centers. Percent of cooling center visitors by the distance between each visitors’ residence and the visited center, on control 
day and heat day, with fitted distance decay power model, (C) for Formal Centers, and (D) for Informal Centers. 

Table 3 
Distance decay inverse Power Model for number of visits to cooling centers by distance between visitors’ residence and the visited center.  

Percent of visits to cooling center = a (Distance between residence and cooling center) b  

Parameter Estimate T-test probability Coefficient Standard Error Adjusted R-Square ANOVA probability 

Heat day 
Formal center a 0.27 <0.005 0.097 0.947 <0.001 

b − 0.98 <0.001 0.112 

Informal center a 0.39 0.028 0.184 0.696 <0.001 
b − 1.23 <0.001 0.154 

Control day 
Formal center a 0.26 <0.005 0.094 0.948 <0.001 

b − 0.95 <0.001 0.115 

Informal center a 0.38 0.023 0.174 0.699 <0.001 
b − 1.22 <0.001 0.148  
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Maricopa County, Arizona (Berisha et al., 2017; Fraser et al., 2018). The 
use of formal centers is more localized than informal centers, and visi-
tors tend to go to formal centers that are closer to their residences; 
however, the walkable location of centers did not prove to promote 
higher visits on heat days, and cooled transportation to centers might be 
more favorable than walking in heat. The additional test of evaluating 
the distance to transportation stops showed that the vulnerable groups 
would visit centers less by an increase in the distance to the nearest 
transportation stop. These findings can all guide the siting and estab-
lishment of new centers by local jurisdictions. 

4.2. Cooling center use efficacy as a heat mitigation strategy 

The novel application of mobile phone data for gauging the use of 
cooling centers during heat event days, proved to provide some insight 
into this less-studied mitigation strategy that is informative for both 
future mitigation plans, and other applications of the method for 
assessment of similar strategies. Even though there are some consider-
ations regarding the sampling bias and representation, as mobile phone 
users appear to slightly represent the higher income, younger pop-
ulations, and white neighborhoods more, the size of sample data 
partially accommodates this aspect. We acknowledge that imple-
mentation of this method in other regions may show variations in use of 
different types of cooling centers, since our results could be specific to 
the unique characteristics of Los Angeles County. The sample size is, 
however, large and provides empirical evidence to support policy de-
cisions that are now urgent. Insights from Los Angeles are likely to be 
relevant with other large cities in similar climatic and cultural condi-
tions and certainly to the semi-arid and arid southwest of the United 
States. 

4.3. Uncertainties and considerations for future studies 

While we consider the distance between cooling centers and resi-
dence location, some of the visitors might have visited cooling centers 
that are closer to their work location -depending on availability of air 
conditioning systems at the workplace-, which could be extracted in 
future studies and compare if the work location of individuals is a 
defining factor in their use of cooling centers. Additionally, we did not 
account for variations in individuals’ activity space and hypermobility 
(i.e., highly mobile individuals who take frequent trips, over great dis-
tances), which could be included in future studies to distinguish between 
individuals traveling behavior and how much it might adapt to tem-
perature changes. Use of APIs to calculate network distances and travel 
times could provide a refined view of distance traveled to centers or to 
transportations stops in future studies. Finally, from our sample of Los 
Angeles County residents, about 79.5% did not use the centers, who in 
comparison with the visitors of cooling center, are living in neighbor-
hoods with relatively higher income, higher percentage of renters, lower 
number of mobile homes, younger population, and higher percentage of 
individuals without a car. However, there is no geographical pattern 
across the County associated with residents who visited or did not visit 
the cooling centers, and the distance to the centers or distance to nearest 
transportation stop is not related to the decision to visit the centers. 
Future studies can further illuminate the reasons behind the choice to 
visit cooling centers. 

5. Conclusion 

The study of a sample population from mobile phone users in Los 
Angeles County showed that about 20% of the population use cooling 
centers, while the majority of visitors use publicly available cooled 
spaces like shopping centers. Therefore, one available adaptation solu-
tion is to provide incentives and accommodations for accessibility of 
cooled commercial spaces and allow their use by vulnerable residents 
during extreme heat events. The findings suggest that cooling center 

visitors stay longer in the centers during heat events, thus confirming 
their adoption and use as a heat refuge. Additionally, higher vulnera-
bility populations use cooling centers more, which aligns with accessi-
bility goals and confirms previous surveys or census data in Los Angeles 
County, California and Maricopa County, Arizona. Finally, cooling 
center visitors are more likely to travel longer distances to informal 
centers, but the visitors of formal centers are more local, suggesting that 
formal centers are serving their neighborhoods. These results may arise 
from the particular environment and characteristics of Los Angeles 
County, and studies from other regions can further illuminate the effi-
cacy of cooling centers as a heat mitigation strategy. 
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