Quantifying Water and Cost Savings from UCLA Turf Conversions

Irrigation Team OUCLA Sustainability Action Research

June 1st, 2023

Team and Stakeholder Introduction

Team Leads

Gabby Bates, Sophie Rockefeller

Team Members

Abby Giardina, Nalin Jayaswal, Kentaro Matsunaga, Hailey Sarmiento

Stakeholder

Greg Luna – Senior Superintendent of Grounds

Key Informants

Suzanne Gagliano – Irrigation Team Supervisor Alex Gomez – Horticulturist and Landscape Architect Chris Woo – Director of Health Grounds

UCLA FACILITIES MANAGEMENT

Current Irrigation Practices at UCLA

UCLA is converting areas of **natural turf** to **drought tolerant and native plants.**

UCLA does not currently track:

- Current water use of natural turf areas
- Future water use of landscaped areas
- Return on investment time for converted landscapes

Research Questions and Variables

How will water and maintenance savings for turf conversion projects...

- vary based on current irrigation type?
- offset the cost of conversion and affect return on investment (ROI) time?

Variables we are tracking:

Water Use of Turf Areas Water Use of Native Landscapes Costs and Saving of Conversion

Key Terms: Irrigation on Campus

Pop-Ups

Rotors

Dripline

Methods: Irrigation Output

Site Selection

Field Data Collection

Methods: Irrigation Output

Manufacturer Data

PGP® ULTRA / I-20 BLUE STANDARD NOZZLE PERFORMANCE DATA							
Nozzle	Pressure PSI	Radius	Flow GPM	Precip in/hr			
	25	29	1.2	0.27	0.32		
1.5	35	31	1.4	0.28	0.32		
Blue	45	31	1.5	0.30	0.35		
	55	32	1.8	0.34	0.39		
	65	32	1.9	0.36	0.41		
2.0	25	33	1.4	0.25	0.29		
2.0	35	33	1.7	0.30	0.35		
Blue	45	34	2.0	0.33	0.38		
	55	34	2.1	0.35	0.40		
	65	32	2.3	0.43	0.50		
2 5	25	33	1.7	0.30	0.35		
2.5	35	35	2.1	0.33	0.38		
Blue	45	35	2.5	0.39	0.45		
	55	35	2.6	0.41	0.47		
	65	35	2.9	0.46	0.53		
20	25	35	2.2	0.35	0.40		
5.0	35	36	2.7	0.40	0.46		
Blue	45	38	3.0	0.40	0.46		
	55	39	3.4	0.43	0.50		
	65	39	3.7	0.47	0.54		

Calculations

 $\int T(x) \cdot \frac{\partial}{\partial \theta} f(x,\theta) dx = M \left(T(\xi) \cdot \frac{\partial}{\partial \theta} \ln \theta \right)$ $\int T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot \int_{R_{*}} T(x) \cdot \left(\frac{\partial}{\partial$

Use data to calculate water usage per square foot per year at each site

Irrigation Output by Building

Average Water Use on Lawn Areas 20 15 10 5 **Public Affairs** Murphy Hall Kaufmann Hall Broad Hall

Gallons per sq ft per year

These buildings have a mix of pop-up and rotor heads.

All are **first priority areas** for conversion.

Buildings that **use the most** water should be considered the **highest priority for conversion**

Water Usage of Pop–Ups versus Rotors

Average Water Usage per Year by Irrigation Type

Pop-Ups: Average of **14.189** gallons per square foot per year

Rotors: Average of **15.384** gallons per square foot per year

On average, pop-ups use less water than rotors

Locations irrigated by rotors can be considered the highest priority for conversion, but this **difference is marginal.**

Case Study: Moore Hall Turf Conversion

Methods: Cost-Benefit Analysis

Information Gathering

Data collection on costs of conversion, maintenance, and watering schedules via informal interviews from the Landscaping Staff

Return on Investment (ROI) Analysis

Full cost-benefit analysis on costs and savings per square foot. Calculated time to reach return on investment.

Moore Hall Water Usage

Moore Hall Water Use: Turf vs Landscape

250000 232,432 200000 150000 **Gallons per Year** 104,000 100000 51.999 50000 12,000 0 Landscape Turf Landscape Landscape (Established (Year 1) (Year 2 and 3) Plants)

Landscaped Plant Watering Schedule:

- Year 1: One hour weekly
- Year 2-3: Thirty minutes weekly
- Established Plants: Thirty minutes monthly

Yearly water savings for established landscape ≈ 220,432 gallons

Reduction in Water Expenditures for Established Plants:

- Yearly savings = **\$1812.96**
- Savings per square foot per year = **\$0.12**

Costs of Turf Conversion: Fixed Costs

Expenditures	Cost
Plant Purchases	\$38,000
Cost of Labor	\$47,000
River Rock	\$12,000
Irrigation Equipment	\$10,000
Mulch and Other Material	\$13,500
Total Cost	\$120,500
Cost per square foot	\$7.98

LADWP Conversion Rebate: \$5 per square foot

Expenditure	Adjusted Cost
Cost per square foot	\$2.98
Total Cost	\$44,960

Moore Area = 15108 square feet

Moore Hall Yearly Maintenance Costs

Turf

Landscaped

Expenditure	Yearly Costs	Expenditure	Yearly Costs
Mulch and woodchips	\$250	Mulch and woodchips	\$500
Tool repairs and replacement	\$300	Tool repairs and replacement	\$50
Irrigation repairs	\$500	Irrigation repairs	\$500
Aeration	\$800	Cost of labour per year	\$18,170.88
Fertilizer	\$1625	Total cost	\$19,220.88
Labor	\$54,512.64	Cost per square foot	\$1.27
Total Cost	\$57,987.64		
Cost per square foot	\$3.84		

Yearly Maintenance Cost Savings = \$38,767 (\$2.57 per square foot)

Return on Investment Timeline

From Tuf to Native Plant Beds, Including Rebate Value

Year 0 - 1

Year 1 - 3

Return on Investment Timeline

From Turf to Native Plant Beds, Excluding Rebate Value

Native Plant Species Non-Monetary Benefits

Only **50%** of species planted at Moore are native to California.

EDI benefits of native species: Native plants have medicinal and teaching purposes in indigenous communities.

Incorporating more endemic species on UCLA campus supports land recognition, promotes engagement with native histories, and provides educational opportunities.

Moving Forward

...the Moore you know!

Optimizing turf conversion locations

• Conversion site selection based on irrigation type

Benefits of turf conversion

- Turf conversion is extremely cost effective
- Significant yearly water savings

Looking towards the future

• Embrace native species

Thank You

To our stakeholders and program directors for your support!

