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Introduction

The expansion of cities, both in their geographic scope as 
well as their use of resources, can result in ecological deg-
radation (Elmqvist et al. 2016; Johnson and Munshi-South 
2017). However, urban environments are not necessarily 
just degraded forms of pre-existing ecosystems but may 
be more accurately considered as a class of anthropogenic 
biome (Pincetl 2015; Fleming and Bateman 2018; Teixeira 
and Fernandes 2020). Urban environments are shaped by a 
combination of variables both natural, such as bioclimate 
and topography (Qian et al. 2020; Kendal et al. 2018;), and 
anthropogenic, such as land use and artificial illumination 
(Johnson et al. 2018; Pauwels et al. 2019). Through a vari-
ety of human activities, ranging from transport to habitat 
modification, urban environments contain a mix of native 
and non-native species (Helden et al. 2012; Gaertner et al. 
2017; Godefroid and Ricotta 2018; Gruver and CaraDonna 
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Abstract
In an increasingly urbanized world, there is a need to study urban areas as their own class of ecosystems as well as assess 
the impacts of anthropogenic impacts on biodiversity. However, collecting a sufficient number of species observations to 
estimate patterns of biodiversity in a city can be costly. Here we investigated the use of community science-based data on 
species occurrences, combined with species distribution models (SDMs), built using MaxEnt and remotely-sensed mea-
sures of the environment, to predict the distribution of a number of species across the urban environment of Los Angeles. 
By selecting species with the most accurate SDMs, and then summarizing these by class, we were able to produce two 
species richness models (SRMs) to predict biodiversity patterns for species in the class Aves and Magnoliopsida and how 
they respond to a variety of natural and anthropogenic environmental gradients.

We found that species considered native to Los Angeles tend to have significantly more accurate SDMs than their non-
native counterparts. For all species considered in this study we found environmental variables describing anthropogenic 
activities, such as housing density and alterations to land cover, tend to be more influential than natural factors, such as 
terrain and proximity to freshwater, in shaping SDMs. Using a random forest model we found our SRMs could account 
for approximately 54% and 62% of the predicted variation in species richness for species in the classes Aves and Magno-
liopsida respectively. Using community science-based species occurrences, SRMs can be used to model patterns of urban 
biodiversity and assess the roles of environmental factors in shaping them.
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2021). While heavily modified, these environments can 
contain diverse and functioning ecosystems (Baldock et al. 
2019; Beller et al. 2019; Wenzel et al. 2020; Casanelles-
Abella et al. 2021). This in turn has motivated interest in the 
study and management of urban ecosystems in their own 
right, and how they are shaped by environmental gradients 
(Grêt-Regamey et al. 2017; Shaffer 2018; Montero 2020; 
Uchida et al. 2021).

Research has been carried out in the potential of vari-
ous measures of biodiversity to be used as environmental 
indicators in urban environments (Godefroid 2001; Llop 
et al. 2012; Guilland et al. 2018; Alquezar et al. 2020). 
Though the presence or abundance of various species have 
been used as environmental indicators, there is still the ill-
defined problem of selecting such species for a given set 
of environmental assessment criteria (Siddig et al. 2016). 
Furthermore, while some urban ecosystems have been sys-
tematically assessed (Baldock et al. 2019; Planillo et al. 
2021; Casanelles-Abella et al. 2021), there have often been 
significant limitations in obtaining a sufficient number of 
observations with which to build and test assessment mod-
els for most cities (Cappa et al., 2021).

To address these limitations we propose using machine 
learning, in combination with community science-based 
species observations, to select and evaluate both the accu-
racy and behavior of species for use as indicators of envi-
ronmental quality. Community science, the collection or 
analysis of data by non-professional scientists, has shown 
promise in enabling the collection of sets of species obser-
vations on a far larger scale than from individual research 
projects (McCaffrey 2005; Silvertown 2009; Kobori et al. 
2016; Ballard et al. 2017; Spear et al. 2017), especially on 
private lands which are typically undersampled in urban 
environments (Ballard et al. 2017). Machine learning, in 
particular species distribution models (SDMs), can then fur-
ther extend the geographic extent of our understanding of 
species distributions by generating predictions on how the 
presence of species will vary in response to environmen-
tal conditions, even from a relatively small set of observa-
tions (Elith and Leathwick 2009). The accuracy of SDMs 
has been used to investigate the potential of various spe-
cies, both native and non-native, to act as environmental 
indicators (Sergio and Newton 2003; Growns et al., 2013; 
Vallecillo et al. 2016). In urban environments, SDMs have 
been investigated as a means for assessing patterns of bio-
diversity at spatial resolutions not typically possible with 
point-based sampling (Milanovich et al. 2012; Stas et al. 
2020; Wellmann et al. 2020; Casanelles-Abella et al. 2021; 
Planillo et al. 2021). Urban SDMs have also enabled com-
parisons of the effects of socio-ecological factors, driven 
by anthropogenic activity, versus natural variations in the 
environment (Rhodes et al. 2006; Le Louarn et al. 2018; Liu 

et al. 2019). Additionally, models predicting the richness of 
various groups of species, species richness models (SRMs), 
have also been studied in a similar fashion as SDMs for 
investigating the impacts of environmental conditions on 
urban biodiversity (Gavier-Pizarro et al. 2010; Perillo et al. 
2017; Fröhlich and Ciach 2019).

In order to investigate the potential of combining the 
use of SDMs and SRMs with community science-based 
observations of species, we used the city of Los Angeles as 
our test case. We selected Los Angeles as there is current 
interest in assessing it ecologically (Jenerette et al. 2016; 
Spear et al. 2017; McGlynn et al. 2019; Avolio et al. 2020; 
Rauser 2021), covers significant variations in both eleva-
tion and microclimates (Tayyebi and Jenerette, 2016), lies 
within one of the 36 most biodiverse terrestrial ecosystems 
in the world (Myers et al. 2000), and contains a large num-
ber of observations from community scientists (Vendetti 
et al. 2018; Leong and Trautwein 2019; Callaghan et al., 
2020). As Los Angeles is a heavily urbanized area within 
a designated biodiversity ‘hotspot’ (Gillespie et al. 2018), 
it can also serve as a model city for assessing the potential 
of various species to act as environmental indicators in an 
urban context.

Within Los Angeles we then propose to investigate the 
following in an urban environment:

(1)	 Compare the accuracy of SDMs constructed from native 
and non-native species.

(2)	 Assess the importance of anthropogenic and natural 
environmental variables in shaping urban biodiversity 
patterns as described by SDMs.

(3)	 Identify individual species, given the accuracy of 
their SDMs, which may act as accurate environmental 
indicators.

(4)	 Construct and assess the reliability of SRMs, assembled 
from species with the most accurate SDMs, to predict 
species richness across an urban landscape.

Methods

Software and workflow

Our analysis was conducted in R v4.1.2 using RStudio 
2021.09.1 + 372 “Ghost Orchid” Release (RStudio Team, 
2021). Processing of geospatial data involving the use of 
Geospatial Data Abstraction Library (GDAL) was done 
using version 3.4.1 of that software. A diagram of our analy-
sis workflow is illustrated in Fig. 1.
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Study area

Our study area covered the city of Los Angeles, an urban 
environment centered at 34.05° N, 118.24° W with approxi-
mately 4  million inhabitants covering over 1200 km2 
(Kawabata and Shen 2006). The city is part of the greater 

Los Angeles area, an urban agglomeration containing over 
18  million people covering approximately 88,000 km2 of 
southern California biomes ranging from chaparral to coastal 
oak forests (Tayyebi and Jenerette, 2016). This region is 
within a Mediterranean climatic zone, receiving the bulk of 
its annual rainfall (40  cm) during the winter season (Hill 

Fig. 1  Workflow diagram for generating and evaluating SDMs and SRMs
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number for generating accurate SDMs using MaxEnt (van 
Proosdij et al. 2016), leaving 20,050 observations cover-
ing 122 species for analysis. These species were assigned 
a native or non-native status using a CalFlora list of plants 
and fungi native to Los Angeles County (SI: File 1), and 
a corresponding list of animal species curated by the Los 
Angeles Sanitation & Environment (LASAN, 2021) (SI: 
File 2), producing a split of 96 native and 26 non-native 
species across 10 classes (Table 1).

The number of remaining presences used to estimate 
sampling bias for each species ranged from 25 to 242. This 
method allows for the number of sampling of background 
points for each species to grow or shrink in proportion to its 
sampling effort. This method of sampling is often used to 
account for spatial bias in non-systematic sampling efforts 
(Phillips et al. 2009; Syfert et al. 2013; Molloy et al. 2017).

Environmental data

We obtained our initial set of 39 environmental layers, 25 
natural and 14 anthropogenic, from a variety of sources 
(https://doi.org/10.5068/D1W988). We selected these initial 
layers (SI: File 4), as they cover both variations in biocli-
mate and topography as well as anthropogenic modifications 
to the environment such as housing density and exposure 
to light pollution, which have been found to influence the 
spatial distributions of a wide variety of species (Davies et 
al. 2008; Santorufo et al. 2012; Chong et al., 2014; Nor-
ton et al. 2016; Lin et al. 2021; Simons et al. 2021). We 
also selected a number of composite measures of anthro-
pogenic disturbance, specifically habitat quality (Brown, 
2019), the global human modification index (gHM) (Ken-
nedy et al. 2019), the Calenviroscreen pollution exposure 
score (PollutionS) and its composite with a human popula-
tion vulnerability index (CIscore) (Faust et al. 2017). These 
measures integrate data on land cover, habitat connectivity, 
and anthropogenic disturbance, impacts to human health, 
and interactions between human population characteristics 
and environmental contamination, all of which have been 
found to influence urban biodiversity (Table 2).

This set of environmental layers was then clipped and 
aligned to the city boundaries of Los Angeles using GDAL 
(Warmerdam 2008) with the project coordinate reference 
system (EPSG:2229) and resolution (30 ft / 9.1 m). From 
this initial set of environmental layers we retained 21 after 
removing those with a Pearson’s correlation greater than 
0.7 to other layers (Barber et al., 2021). This was done 
using the function removeCollinearity within the R pack-
age virtualspecies v1.5.1 (Leroy et al. 2016) with 100,000 
randomly selected points. Of the layers we retained, 12 
described anthropogenic variables and 9 natural environ-
mental variables (Table 2). We calculated the variability in 

et al. 2016). While the environment of this region is heav-
ily modified through the expansion of impervious surfaces, 
irrigation, river channelization and transportation networks, 
it has been found to contain a diverse, albeit heavily altered, 
set of species (Pataki et al. 2013; Li et al. 2019; Adams et al. 
2020; Rogers et al. 2020).

Occurrence data

We sought to obtain as diverse an array of species as possi-
ble from public databases in order to assess their behavior as 
potential environmental indicators. Our initial set of species 
observational data was obtained from the Global Biodiver-
sity Information Facility (GBIF) (GBIF.org, 2021) with the 
following query: (1) observations made within the period 
2010–2020, (2) within the spatial extent of Los Angeles 
County, and (3) with a spatial uncertainty of less than 30 m. 
We selected GBIF data within the decade 2010–2020 as it 
both provided for species observations covered by the range 
of time when our environmental data sets were collected 
(SI: File 4). This initial set of 120,713 observations was then 
filtered using the function st_intersection from the R pack-
age sf v1.0-5 (Pebesma 2018) to contain only observations 
within the political boundaries of the city of Los Angeles 
and with a spatial uncertainty of less than 10 m.

To reduce the effects of spatial clustering of our occur-
rence data we performed spatial thinning, using the function 
thin within the R package spThin v0.2.0 (Aiello-Lammens 
et al. 2015), with a minimum separation distance of 500 m. 
Species were retained if at least 25 presence points remained 
after spatial thinning, as this is a conservative minimum 

Table 1  Number of species, number of species with fairly performing 
SDMs (Mean TSS ≥ 0.3), their native / non-native status, organized by 
class
Class Status Number of 

species
Number of 
species with 
fair perform-
ing SDMs

Agaricomycetes Native 1 0
Aves Native 30 9
Insecta Native 13 0
Liliopsida Native 1 1
Magnoliopsida Native 41 13
Mammalia Native 6 2
Reptilia Native 4 1
Arachnida Non-Native 3 0
Aves Non-Native 3 1
Gastropoda Non-Native 2 1
Insecta Non-Native 10 0
Liliopsida Non-Native 2 0
Magnoliopsida Non-Native 3 0
Malacostraca Non-Native 1 0
Mammalia Non-Native 2 0
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Anthropogenic environmental variables
Variable name Variable description Proxy Source 

resolution
Source Evidence of ecological 

relevance
CIscore CalEnviroScreen Score, Pollution 

Score multiplied by Population Char-
acteristics Score

Ecological 
disturbance: 
terrestrial, 
atmospheric, 
water

30 ft / 9.1 m (Faust et al. 
2017)

(Brown, 2019)
(Cushing et al. 2015)
(Faust et al. 2017)

gHM Global Human Modification index Ecological 
disturbance: 
terrestrial

1000 m (Kennedy et 
al. 2019)

(Liu et al. 2021)

gwthreats Groundwater threats, sum of 
weighted GeoTracker leaking under-
ground storage tank sites within buff-
ered distances to populated blocks of 
census tracts

Ecological 
disturbance: 
water

30 ft / 9.1 m (Faust et al. 
2017)

(Ferreira et al. 2018)
(Hassall 2014)

HabitatQuality A 10 point habitat quality scale for 
Los Angeles native species

Ecological 
disturbance: 
terrestrial

30 ft / 9.1 m (Brown, 
2019)

(Roeland et al. 2019)
(Beninde et al. 2015)

haz Sum of weighted hazardous waste 
facilities and large quantity gen-
erators within buffered distances to 
populated blocks of census tracts

Ecological 
disturbance: 
terrestrial

30 ft / 9.1 m (Faust et al. 
2017)

(Santorufo et al. 2012)

HousingDensity Number of housing units per square 
kilometer

Ecological dis-
turbance: ter-
restrial, Habitat 
availability

30 m / 9.1 m (Radeloff et 
al. 2018)

(Davies et al. 2008)
(Kolbe et al. 2016)
(Gagné et al., 2011)
(Aronson et al. 2014)
(Sol et al. 2014)

iwb Impaired water bodies, sum of num-
ber of pollutants across all impaired 
water bodies within buffered dis-
tances to populated blocks of census 
tracts

Ecological 
disturbance: 
water

30 ft / 9.1 m (Faust et al. 
2017)

(Ferreira et al. 2018)
(Datry et al. 2006)

LightPollution Estimated exposure to artificial night 
sky illumination in microcandela per 
square meter.

Ecological 
disturbance: 
terrestrial

30 arcseconds 
/ 776.7 m

(Falchi et 
al. 2016)

(Hölker et al. 2010)
(Ciach et al., 2017)
(Lian et al. 2021)

pesticides Total pounds of selected active pes-
ticide ingredients (filtered for hazard 
and volatility) used in production-
agriculture per square mile in the 
census tract

Ecological 
disturbance: 
terrestrial

30 ft / 9.1 m (Faust et al. 
2017)

(Bertoncini et al. 2012)
(Aronson et al. 2017)

PollutionS Pollution Burden variable scaled 
with a range of 0–10. (Used to calcu-
late CalEnviroScreen Score)

Ecological 
disturbance: 
terrestrial, 
atmospheric, 
water

30 ft / 9.1 m (Faust et al. 
2017)

(Ferreira et al. 2018)

swis Sum of weighted solid waste sites 
and facilities (SWIS) within buffered 
distances to populated blocks of 
census tracts

Ecological 
disturbance: 
terrestrial

30 ft / 9.1 m (Faust et al. 
2017)

(Santorufo et al. 2012)
(Ferreira et al. 2018)

traffic Traffic density, in vehicle-kilometers 
per hour per road length, within 
150 m of the census tract boundary

Ecological 
disturbance: 
terrestrial

30 ft / 9.1 m (Faust et al. 
2017)

(Davies et al. 2008)
(Kolbe et al. 2016)
(Proppe et al. 2013)

Natural environmental variables
Aspect Direction with which the landscape 

faces. North is at 0 degrees, and 
increases clockwise.

Habitat 
topography

1 arcsecond / 
25.9 m

(Maune 
2006)

(Davies et al. 2008)
(Rastandeh et al. 2019)

bio06 Minimum Temperature of Coldest 
Month

Climate 30 arcseconds 
/ 776.7 m

(Fick and 
Hijmans 
2017)

(Kendal et al. 2018)
(Polidori et al. 2021)
(Heringer et al. 2021)
(Beninde et al. 2015)
(Harrison and Winfree 2015)

Table 2  Environmental variables used in this project, with attributions
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within the R package gdalUtils v2.0.3.2 (Greenberg and 
Mattiuzzi 2015).

Building SDMs

In order to construct SDMs we used the machine learning 
technique of Maximum Entropy (MaxEnt). We selected 
MaxEnt for constructing our SDMs as it can work with 
presence-only data for species observations (Elith et al., 
2011), which are commonly found in databases such as 
the GBIF (Edwards 2004). The accuracy of MaxEnt-based 
SDMs have also been used in assessing the potential of spe-
cies to act as environmental indicators (Jose V, 2020), that 
is, species whose likelihood of presence can be accurately 
predicted by a set of environmental conditions.

For each species a set of 10 MaxEnt models were run 
using the function maxent, within the R package dismo 
v1.3-5 (Hijmans et al. 2017), with its default settings. Spe-
cies input data consisted of both presence points, as well 
as 10,000 background points sampled using the function 
xyFromCell within the package raster and a sampling prob-
ability determined using a species specific spatial bias raster. 
To enable an assessment of accuracy, each model utilized a 
randomly sampled set of 80% of presence and background 
points for model training, while the remaining 20% were 
used for testing.

these remaining environmental layers by calculating their 
coefficients of variation using the function cellStats in raster 
(SI: Table 5).

Accounting for spatial bias in species observations

To visualize geographic biases in observational data we 
converted our spatially thinned occurrences into a heatmap 
using the function stat_density_2d in the R package ggplot2 
v3.3.5 (Wickham et al. 2016). Prior to running species dis-
tribution models, spatial biases in species observations were 
accounted for by modifying the sampling of background 
points using a probability function corresponding to sam-
pling effort for each species (Filazzola et al. 2018; von 
Takach et al. 2020). This probability density function was 
generated for each species using a two-dimensional kernel 
density estimate, with the function kde2d in the R package 
MASS v7.3-54 (Ripley et al. 2013), using the density of 
spatially thinned observations for each species. The spatial 
bias raster of each species was then generated, along with 
the spatially thinned data set as a whole (SI: Fig. 4), in the 
project coordinate reference system and resolution, from 
this kernel density estimate using the function raster in the R 
package raster v2.5-2 (Hijmans and van Etten., 2015). Each 
of these spatial bias rasters were then clipped and aligned to 
the boundaries of Los Angeles using the function gdalwarp 

Anthropogenic environmental variables
bio11 Mean Temperature of Coldest 

Quarter
Climate 30 arcseconds 

/ 776.7 m
(Fick and 
Hijmans 
2017)

(Kendal et al. 2018)
(Polidori et al. 2021)
(Heringer et al. 2021)
(Beninde et al. 2015)
(Harrison and Winfree 2015)

bio12 Annual Precipitation Climate 30 arcseconds 
/ 776.7 m

(Fick and 
Hijmans 
2017)

(Kendal et al. 2018)
(Polidori et al. 2021)
(Heringer et al. 2021)
(Beninde et al. 2015)
(Harrison and Winfree 2015)

bio17 Precipitation of Driest Quarter Climate 30 arcseconds 
/ 776.7 m

(Fick and 
Hijmans 
2017)

(Kendal et al. 2018)
(Polidori et al. 2021)
(Heringer et al. 2021)
(Beninde et al. 2015)
(Harrison and Winfree 2015)

LACoastlineProximity Distance to coastline Climate 30 ft / 9.1 m (Hapke et 
al. 2006)

(Sperandii et al. 2019)
(Orlando et al. 2020)

LALakeProximity Distance to nearest open body of 
freshwater

Water 
availability

30 ft / 9.1 m (California 
Department 
of Fish 
and Game, 
2012)

(Hassall 2014)
(Callaghan et al. 2018)
(de Camargo Barbosa et al. 
2020)

LAStreamsProximity Distance to nearest stream Water 
availability

30 ft / 9.1 m (Simley and 
Carswell 
2009)

(Chin and Kupfer 2020)
(Houlahan and Findlay 
2003)
(Melles et al. 2003)

Slope Percent slope Habitat 
topography

1 arcsecond / 
25.9 m

(Maune 
2006)

(Davies et al. 2008)
(Rastandeh et al. 2019)

Table 2  (continued) 
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1977). This selection criterion produced a list of 9 native 
species in the class Aves, and 13 in the class Magnoliopsida 
(Table 1). For species in both lists, SDM maps were gener-
ated using the function predict within the R package raster. 
Each SDM map was generated using the maxent function 
with all available spatially thinned presence points, 10,000 
background points, and a presence threshold set as the max-
imum sum of the specificity and sensitivity.

Constructing and evaluating SRMs

The SDMs from these two classes were then summed, using 
the calc function in raster, to construct a SRM for species in 
each class (Fig. 2). These two SRMs represent the richness 
of nine species within the class Aves and another represent-
ing the richness of thirteen species within the class Mag-
noliopsida (SI: Table 6). Visualization of these SRM maps, 
which illustrate the predicted species richness per 900 ft2 / 
83.6 m2 map call, was done using the function leaflet in the 
R package leaflet v2.0.4.1 (Cheng et al. 2018).

To evaluate the accuracy of our SRMs to respond to our 
environmental variables (Table 2) we used a random forest 
model, which has been shown to be an accurate method for 
predicting the spatial distribution of other ecological data 
sets (Rodriguez-Galiano et al. 2012). For each SRM we 
constructed a set of 100 random forest models using train-
ing data sets and the function tuneRF, within the R package 
randomForest v4.6-14 (Liaw and Wiener 2002), with step-
Factor set to a value of 1 and doBest set as ‘true’. Data for 
each random forest model of a SRM was extracted from 300 
randomly selected locations within our study area using the 
function extract within raster. We chose 300 locations as this 
was found to be the minimum number needed to consistently 
model significant (Pearson correlation, p < 10− 4) predictions 
of both SRMs using random forest. A training set was gen-
erated by randomly sampling 80% of these extracted data 
using the function kfold within dismo. Predicted SRM val-
ues were calculated using the function predict within ran-
domForest, which were then compared against their actual 
counterparts with a Pearson correlation coefficient. The root 
mean square error (RMSE) for each random forest model 
was calculated using the function rmse in the R package 
Metrics v0.1.4 (Hamner et al. 2018).

The mean and standard deviation on the 100 Pearson cor-
relation coefficients, generated in evaluating each random 
forest model of a SRM, were then calculated for each class’ 
SRM. This was done by first performing a Fisher transfor-
mation, using the FisherZ function within the R package 
DescTools v0.99.44 (Signorelli, 2020), on the set of Pear-
son correlation coefficients. We used a Fisher transforma-
tion as it has been found to produce less biased summary 
statistics for a set of Pearson correlation coefficients (Corey 

Evaluating SDMs

Comparing native to non-native SDM accuracy: To 
assess the accuracy of these models rates of true and false 
positives and negatives were found using the function eval-
uate within the dismo package. These rates were then used 
to calculate the True Skill Statistic (TSS) for each of the 10 
models run per species. The TSS was used as it has been 
found to be a metric with little dependence on species prev-
alence (Allouche et al. 2006). The value of the TSS ranges 
from − 1 to 1, with a value of 1 corresponding to a perfect 
agreement between predicted and actual distributions, and 
negative values indicating a model’s predictions are no bet-
ter than random (Allouche et al. 2006; Liu et al. 2009). For 
each species we calculated the mean and standard on the 
TSS scores for its maxent models (SI: File 3).

To visualize the distribution of mean TSS scores for each 
species, and how they differ between native and non-native 
species, the functions geom_violin and facet_grid were used 
from ggplot2. These functions were also used to visualize 
the distributions of the percent relative importances of both 
anthropogenic and natural environmental variables in our 
SDMs. To test if the distribution of TSS scores differed sig-
nificantly between SDMs made for native and non-native 
species, we used a Kruskal-Wallis (K-W) test implemented 
with the function kruskal.wallis in the R package stats where 
α was set to 0.05.

Comparing the importance of natural and anthro-
pogenic environmental variables: The percent relative 
importance of the 21 environmental variables used to gener-
ate each SDM were calculated, as a percent contribution to 
each model, using the function var.importance within the 
R package ENMeval v2.0.2 (Muscarella et al. 2014). The 
mean and standard deviation on these relative importance 
values were calculated for each species (SI: File 3).

To visualize the rank mean relative importance of envi-
ronmental variables for each SDM the function geom_tile, 
within the R package ggplot2, was used to visualize a heat-
map. To test if the distribution of the percent relative impor-
tance for natural and anthropogenic environmental variables 
differed significantly, for both native and non-native SDMs, 
we again used a K-W where α was set to 0.05.

Selecting environmental indicator species

Species were selected for constructing our SRMs follow-
ing a cutoff on the mean TSS scores for their SDMs (≥ 0.3). 
While a TSS cutoff of 0.4 has been used to classify SDMs 
as accurate (Thuiller et al. 2019), only one of our species 
exceeded this threshold (Ardea herodias, mean TSS of 
0.43), and so we used a more relaxed threshold of 0.3 to 
select SDMs with a fair level of accuracy (Landis and Koch 
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Fig. 2  SRMs covering the city boundaries of Los Angeles, for native species in the class Aves (a) and Magnoliopsida (b), constructed using SDMs 
with mean TSS scores exceeding 0.3. Color scales reflect the predicted number of species per map cell
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Magnoliopsida and Liliopsida the aspect of the local terrain 
also tended to be influential on the spatial distribution of 
most species (SI: Fig. 5a and h).

Selecting environmental indicator species

Of the 122 species in this study, 28 were found to have 
SDMs considered accurate (Table  1), that is those with a 
TSS score of at least 0.3 (Landis and Koch 1977). Of these 
species 26 were native to Los Angeles, and were predomi-
nantly in the class Aves (9 species) or Magnoliopsida (13 
species) (Table 1 and SI: Table 6).

Constructing and evaluating SRMs

SRMs were assembled by summing SDMs for Los Angeles 
native species in the class Aves and Magnoliopsida (Fig. 2), 
which were the only two sets of species in this study to 
provide for much variation in richness (Table  1 and SI: 
Table 6). The richness of species in both classes could be 
reliably predicted across Los Angeles, from the environ-
mental variables used in this study, albeit with a moderate 
level of uncertainty as described by the RMSEs of SRMs 
from each class (Table 3).

For both SRMs the density of housing units was the most 
influential variable considered (Table 4), which was found 
to generally have a negative relationship with species rich-
ness in both classes (SI: Figures 6a and 7a). Both slope and 
the CIscore, which is a composite of various measures of 
environmental contamination along with both human health 
and socioeconomic factors, tended to be highly important 
in predicting the local richness of species in the class Aves 
or Magnoliopsida (Table  4). For both SRMs a decline in 
species richness tended to be associated with an increase in 
slope or CIscore (SI: Figures 6d-e and 7c and e). The rich-
ness of bird species, more than species in the class Magnoli-
opsida, tended to be more strongly influenced by proximity 
to either streams or lakes (Table 4), with species richness 
tending to decline with distance to either type of freshwater 
(SI: Fig.  6b-c). The richness of species in Magnoliopsida 
were found to be strongly influenced by both habitat quality 
and the gHM (Table 4 ), a measure of anthropogenic modi-
fication to the landscape, with a positive trend associated 
with habitat quality and a negative one with the gHM (SI: 
Fig. 7b and d).

While the relative importance of environmental variables 
declines quickly with rank order for both SRMs (Table 4 ), 
we do note the predicted behavior of both models to be 
somewhat counterintuitive with a variety of the environ-
mental variables considered. For our avian SRM we predict 
a general increase in species richness with various measures 
of anthropogenic disturbance ranging from nearby vehicular 

et al., 1998). The average and standard deviation were then 
inverse Fisher transformed, using the function FisherZInv 
within the DescTools package, to produce a single statistic 
per SRM. For each SRM the median and variance on the 
RMSE values was also calculated. To account for the per-
cent variance explained by our SRMs we used the following 
formula for each SRM:

	
%V arianceexplained =

∑
(Richnessactual − Richnesspredicted)

2

∑
(Richnessactual − mean(Richnessactual))

2� (1)

To compare the relative importance of environmental vari-
ables within our models we used the function importance 
within randomForest. The relative importance of our envi-
ronmental variables was calculated as their mean decrease 
in node impurity as quantified by their Gini indices, with a 
larger value denoting greater relative importance. To gener-
ate individual partial dependence plots we used the function 
partialPlot within randomForest.

To visualize a heat map of the 100 iterations of the par-
tial dependence plots for our environmental variables for 
each SRM, we then used the function geom_bin2d within 
ggplot2. For all our partial dependence heat maps, we 
divided our axes into 20 bins and generated a best-fit curve 
using the function stat_smooth within ggplot2.

Results

Evaluating SDMs

Comparing native to non-native SDM accuracy  We found 
native species had SDMs which tended to be more accurate, 
as assessed by their mean TSS scores (Fig. 3a) (K-W test, 
χ2 = 7.57, p < 10−2), than their non-native counterparts. For 
all of our SDMs, the relative importance of anthropogenic 
environmental variables tended to exceed their natural coun-
terparts (K-W test, χ2 = 16.54, p < 10−4). Even within native 
and non-native species groups (Fig.  3B), anthropogenic 
environmental variables tended to have a greater relative 
importance for both native (K-W test, χ2 = 11.58, p < 10−3) 
and non-native species (K-W test, χ2 = 5.23, p < 0.05).

Comparing the importance of natural and anthropo-
genic environmental variables: For a majority of species 
we found their spatial distributions to be strongly influenced 
by the density of housing units and slope (SI: Fig. 5). Both 
habitat quality and proximity to streams were found to be of 
high relative importance in influencing the SDMs of some 
plants, birds, and insects (SI: Fig.  5a-c). For members of 
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both SRMs tend to increase with variables which are com-
posite metrics of anthropogenic disturbance. In particular, 
we modeled species richness declining with the gHM and 
CIScore and increasing with habitat quality for both SRMs 
(SI: Figures 6e, j and m and 7 b, d-e).

traffic density, to soil and water contamination, pesticide 
use, and light pollution (SI: Fig.  6f-i, o-p, s-t). For our 
Magnoliopsida SRM, species richness was also predicted 
to increase with various measures of soil and water con-
tamination and pesticide use (SI: Fig. 7n-o, q-s). However, 

Fig. 3  Violin plots of the mean TSS scores per SDM split by native / non-native status (a), and the mean percent relative importance of environ-
mental variables for SDMs split both by native / non-native status and anthropogenic / natural category (b)
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to Los Angeles, were biased towards members of the classes 
Aves and Magnoliopsida. This reflects a bias in the com-
munity science data sets found in GBIF towards observa-
tions of both classes (Troudet et al. 2017; Petersen et al. 
2021). Despite this bias, species from both classes have 
been used as environmental indicators in a variety of studies 
of urban areas. For example, avian diversity has been found 
to respond to human modification of landscapes (Callaghan 
et al., 2021), the extent and density of the built environment 
(Pinho et al. 2016), as well as habitat quality and ground-
water contamination (Mekonen 2017), while the diversity 
of flowering plants has been found to respond to the impact 
of road traffic on air and soil quality (Philips et al., 2021) 
as well as landscape modifications (Ioja and Breuste 2020).

Comparing the importance of natural and anthropo-
genic environmental variables: For both native and non-
native species, we tend to find the relative importance of 
anthropogenic environmental variables to be greater in our 
SDMs than natural variables (Fig. 3b and SI: Fig. 5). This 

Discussion

Evaluating SDMs

Comparing native to non-native SDM accuracy  For the spe-
cies we studied, SDMs derived from native species tended 
to be significantly more accurate than SDMs derived from 
non-native species (Fig. 3a). This may reflect the tendency 
of non-native species, especially in urban environments, to 
be able to occupy a broader set of environmental conditions 
than native species (Le Viol et al. 2012; Cervelli et al., 2013; 
Concepción et al., 2016; Callaghan et al., 2019; Colléony 
and Shwartz, 2020). The result of this ecological tendency 
being less expected variation in the likelihood of a species 
being present in response to variations in the environment.

We found that membership in our list of potential environ-
mental indicator species (Table 1), particularly those native 

Table 3  Summary statistics on the accuracy of 100 SRMs, for species in class Aves and Magnoliopsida, generated via random forest. Pearson 
correlation coefficients calculated between training and testing values of species richness. Percent variance explained is calculated as how well 
predicted richness explains the target variance of the training richness. RMSE is calculated as the deviance of actual to predicted species richness
Class Mean (Standard deviation) 

Pearson correlation coefficient
Mean (Standard deviation) % 
Variance explained

Median (Variance) 
RMSE

Variance 
on RMSE

Aves 0.78 (0.19) 54 (13) 1.16 (0.06) 0.06
Magnoliopsida 0.83 (0.21) 62 (12) 1.54 (0.06) 0.06

Table 4  Relative rank importance of environmental variables to our SRMs with variable importance listed in descending order, along with the 
mean and standard deviation of their relative importance, as measured by the mean decrease in their Gini indices. Values recorded as the mean 
value (standard deviation on the mean value), with higher values indicating greater importance of the variable to the model
Rank importance Aves SRM Relative importance Aves 

SRM
Rank importance Magnoliopsida SRM Relative 

importance 
Magnoliop-
sida SRM

HousingDensity 131.31 (38.95) HousingDensity 339.52 (86.15)
LAStreamsProximity 114.44 (45.42) HabitatQuality 208.40 (82.43)
LALakeProximity 63.89 (35.99) Slope 184.45 (57.87)
Slope 41.06 (12.42) gHM 144.35 (45.86)
CIscore 36.70 (16.68) CIscore 108.93 (56.62)
pesticides 33.90 (23.98) LAStreamsProximity 91.00 (34.74)
PollutionS 32.92 (13.80) LACoastlineProximity 56.98 (16.80)
traffic 31.82 (13.04) bio12 53.83 (16.94)
iwb 29.53 (15.79) LightPollution 47.71 (14.54)
HabitatQuality 28.77 (12.32) LALakeProximity 44.38 (22.18)
LACoastlineProximity 27.76 (9.10) Aspect 39.45 (12.78)
bio12 27.46 (9.71) bio11 38.29 (10.95)
gHM 24.69 (6.70) bio06 35.58 (12.41)
Aspect 24.46 (10.00) PollutionS 34.20 (11.75)
LightPollution 20.84 (7.17) iwb 32.11 (14.90)
haz 19.20 (6.78) traffic 31.15 (10.00)
bio06 18.38 (4.71) gwthreats 26.45 (7.65)
bio11 18.20 (5.11) haz 24.82 (7.71)
gwthreats 17.38 (4.92) pesticides 24.40 (14.39)
swis 13.83 (5.40) swis 20.08 (7.43)
bio17 5.93 (1.90) bio17 18.16 (9.04)
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et al. 2020). At a similar geographic scale our Magnoliop-
sida SRM predicts a decline with the distance to freshwa-
ter (SI: Fig. 7f and j), in line with the observed decline of 
plant species richness with distance to freshwater observed 
in Mediterranean climates such as Los Angeles (Hawkins 
et al. 2003).

Less intuitive relationships between species richness and 
individual anthropogenic variables we also observed. For 
example, variables describing the number of unique pollut-
ants within nearby impaired water bodies (iwb) and the areal 
density of pesticide use (pesticides), were both positively 
associated with a rise in Avian and Magnoliopsidan species 
richness (SI: Figures 6f and i and 7 o and s). While pesticide 
use or impaired water bodies would be expected to reduce 
biodiversity, in urban environments they are often associ-
ated with irrigated and fertilized landscapes, which are often 
more species rich as a result (Clarke et al., 2013; Avolio et 
al. 2020). Another measure of anthropogenic disturbance, 
the density of road traffic (traffic), was also associated with 
a positive response in species richness with our Aves SRM 
(SI: Fig. 6 h). Nonetheless, this response may be a result of 
bias in community scientists tending to take bird observa-
tions in proximity to roads (Keller and Scallan 1999; Mair 
and Reute, 2016).

We find additional potential in our method for construct-
ing SRMs for urban environmental assessments given the 
responses of our two SRMs to more integrated measures 
of anthropogenic disturbance: an index of the quality of 
habitat for species native to Los Angeles (HabitatQuality), 
a measure of anthropogenic modification (gHM), an inte-
grated measure of exposure to pollution (PollutionS), and 
an integrated measure of exposure to pollution weighted by 
local measures of socioeconomic vulnerability and health 
outcomes (CIscore). The value of HabitatQuality integrates 
data on land cover and vegetation found to support native 
biodiversity in Los Angeles, along with a measure of geo-
graphic connectivity between habitats supportive of native 
biodiversity (Brown, 2019). That our two SRMs both pre-
dict a positive relationship between HabitatQuality and 
species richness (SI: Figures  6j and 7b) is not surprising, 
with urban species richness generally found to increase 
with related metrics such as the area or connectivity of veg-
etated habitats (Aronson et al. 2014; Beninde et al. 2015; 
Callaghan et al. 2018). In a similar fashion the value of the 
gHM, in integrating the areal fraction dedicated to human 
activities such as impervious surfaces and electricity trans-
mission (Kennedy et al. 2019), would also correspond to 
habitat fragmentation and decline in species richness (SI: 
Fig. 6 m and 7d).

Another unexpected result were discrepancies between 
the predicted species richness of our SRMs and the val-
ues of PollutionS and the CIscore. The value of PollutionS 

pattern has been observed in other cities (Aronson et al. 
2014; Liu et al. 2017), and the greater importance of anthro-
pogenic factors in shaping urban biodiversity (Faeth et al. 
2011; Li et al. 2019) may simply reflect the fact of cities 
being some of the most anthropogenically modified habitats 
on Earth (Chase and Chase, 2016).

Many of the species we selected as potential environ-
mental indicators also have large geographic ranges, often 
extending well beyond California (Table  1). A large geo-
graphic extent for a species can be associated with a wide 
climatic tolerance (Slatyer et al. 2013), although this may 
only weakly hold for various plant species (Bocsi et al. 
2016). With many of our potential environmental indicator 
species having ranges which cover multiple climatic zones, 
this may partly explain the low relative importance of bio-
climatic variables in their SDMs (SI: Fig. 5), which would 
reduce the overall relative importance of natural environ-
mental variables in our overall set of SDMs. The lower rela-
tive importance for natural environmental variables, may in 
part also result from their lower levels of variation across 
the landscape of Los Angeles (SI: Table 5).

Selecting environmental indicator species

We find our species with the most environmentally respon-
sive SDMs to be strongly biased toward native species in 
the class Aves or Magnoliopsida (Table 1). While this in part 
reflects taxonomic biases in our source data, the presence 
of species responsive enough to environmental variations to 
be reliable as indicators in an urban environment may stem 
from traits conducive to tolerance of anthropogenic envi-
ronments such as small size and high dispersal (McKinney 
and Lockwood 1999; Lizée et al. 2011).

Constructing and evaluating SRMs

Our SRMs were able to capture a number of ecological rela-
tionships involving simple environmental variables, such 
as the distance to freshwater or housing density, indicating 
their potential utility in assessing environmental conditions 
in an urban environment such as Los Angeles. For example, 
housing density has been associated with a decline in avian 
species richness (Gagné and Fahrig 2011), which has also 
been more broadly observed in relation to the overall frac-
tion of an urban area dedicated to buildings (Aronson et al. 
2014). Both this decline in urban species richness, as well 
as the importance of the role of building density, has also 
been observed in a variety of plant species (Godefroid and 
Koedam 2007). Our Avian SRM also appears to capture, at 
least on the scale of approximately 10 km (SI: Fig. 6b-c), 
the expected decline in species richness with distance to 
freshwater (Chin and Kupfer 2020; de Camargo Barbosa 
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years of age, which would bias predicted species richness 
downwards. This may in part explain our negative relation-
ship between pollution exposure, which factors in exposure 
of a variety of environmental pollutants to more vulnerable 
young and elderly populations, and species richness as pre-
dicted by our SRMs. Such biases in observer demographics 
may then tend to skew observed biodiversity downwards, 
enhancing any modeled negative response between species 
richness and various socio-ecological variables.

Beyond the potential confounding of observer biases with 
socioeconomic and anthropogenic environmental variables, 
is the issue of temporal gaps between the collection of spe-
cies occurrences and environmental variables used to gen-
erate SDMs. First, our species observations are recent and 
only cover a decade, mirroring the rapid but recent growth 
in community science-based platforms for recording spe-
cies observations (Di Cecco et al. 2021). We aggregated our 
observations across this window of time to provide for suf-
ficient data density to generate SDMs and SRMs, although 
this coarse temporal resolution may obscure a number of 
ecological patterns. A similar issue exists with many of our 
environmental layers, such as those derived from the Calen-
viroscreen or bioclimate, which are updated only once every 
few years and may therefore reduce the predictive power of 
any SDM or SRM which incorporates them.

We also note that the spatial resolutions of a number of 
the remotely sensed environmental layers used in this study 
(SI: File 4) may not be fine enough to sufficiently capture 
their influence in a highly heterogeneous urban environ-
ment. For example, while urban areas tend to produce highly 
localized microclimates which influence local patterns of 
biodiversity (Fournier et al. 2020; Casanelles-Abella et al. 
2021), the resolution the bioclimatic variables we used are 
near a kilometer in scale and may effectively obscure the 
signal any potential relationship. Exposure to artificial light 
at night is also mapped at the same spatial resolution (Fal-
chi et al. 2016), although its illuminance has been found to 
vary by orders of magnitude at the scale of only hundreds 
of meters (Simons et al. 2020). Our species observation data 
then, while large in scale thanks to the efforts of numer-
ous community scientists, may be mapped against a level 
of environmental variation artificially lowered by spatially 
coarse remote sensing data.

Future prospects

The volume of data captured through community science 
has grown rapidly in recent years. Although there are biases 
in the type of species observed, and where they’re observed, 
these may be compensated for through the use of environ-
mental DNA (eDNA). Using eDNA from soil, sediment, 

incorporates exposure to measures of air pollution, such as 
ground-level ozone concentration, human health effects, 
such as asthma hospitalization rates, and additional mea-
sures of environmental degradation, such as the density of 
hazardous waste sites (Meehan August et al. 2012). How-
ever, the value of PollutionS is not associated with a pre-
dicted decline in species richness in either of our SRMs 
(SI: Fig. 6 g and 7n). When the pollution metrics summa-
rized in PollutionS are multiplied against demographic and 
socioeconomic characteristics, such as the fraction of the 
population under 5 or over 65 or people over 25 without a 
secondary education, to produce the CIscore it is associated 
with a predicted decline in species richness (SI: Figures 6e 
and 7e). This difference in predicted responses of species 
richness between exposure to pollution and a composite 
measure of it with characteristics of the human population 
may reflect a relationship between the interactions of the 
physical environment, socioeconomic factors, and biodiver-
sity in an urban context (Schell et al. 2020).

Limitations

Beyond the overrepresentation of species from a few classes 
in GBIF (Troudet et al. 2017; Petersen et al. 2021), there 
remain issues with geographic biases in the observational 
data used to construct SDMs. We found geographic biases in 
the locations of all the species used in this study (SI: Fig. 4a), 
as well those used to construct our SRMs (SI: Fig. 4b-c), 
and this type of observational bias has been observed in 
prior studies using community science data (Mair and Ruete 
2016; Petersen et al. 2021). While we were able to account 
for these spatial biases in generating our SDMs, we found 
our data to be clustered in large urban parks (SI: Fig.  4). 
This geographic bias toward large urban parks may in part 
be a result of their accessibility, as well as the expectation 
of community scientists on finding more diversity to cap-
ture in park spaces versus more developed land (Bonney 
et al. 2009; Callaghan et al., 2020). In urban environments 
biodiversity tends to be relatively high in large park spaces 
(Matthies et al. 2013), with the richness of species in parks 
following a species-area relationship (Nielsen et al. 2014). 
Additionally, cities are often built in biodiverse areas and 
many of these park spaces may simply reflect this relic bio-
diversity (Kühn et al. 2004; Luck 2007).

Geographic biases in species observations may also stem 
from the skewed demographics of people collecting com-
munity science data, which is biased towards those who 
are under 65 years of age and have a post-secondary degree 
(Ganzevoort et al. 2017; Lopez et al. 2020). Such a bias 
may affect the number of species observations in areas with 
a higher proportion of the population below 5 or over 65 
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in developing ecological assessments for urban areas as 
they are both highly heterogeneous, and in a global envi-
ronment rapidly responding to anthropogenic activity, ever 
more dynamic. Despite potential biases, both in the spatial 
distribution of sampling efforts and towards particular taxo-
nomic groups, we demonstrate the potential use of species 
distribution modeling and community science-based obser-
vations to both identify potential environmental indicators 
and assess the response of biodiversity to environmental 
conditions in an urban environment. We found evidence that 
native SDMs tend to be more accurate than their non-native 
counterparts, and that biodiversity patterns in urban envi-
ronments are driven more by anthropogenic activities than 
variations in the natural environment. In constructing SRMs 
from the most accurate SDMs, we were able to detect a 
number of plausible responses of urban biodiversity to envi-
ronmental conditions. Of particular interest is the potential 
for our SRMs to detect declines in biodiversity associated 
with measures which integrate both exposure to various 
pollutants, as well socioeconomic characteristics, on a local 
basis. However, because of various biases associated with 
the backgrounds of community scientists, some of the envi-
ronmental responses of our SRMs may be confounded with 
socioeconomic variables. We therefore recommend future 
development of this methodology to incorporate a broader 
initial set of environmental and socioeconomic variables in 
order to better correct for potential observer biases, and sub-
sequently improve the accuracy of result SDMs and SRMs 
to capture meaningful environmental responses in urban 
environments.

Acknowledgements  We would like to acknowledge Michelle Barton, 
Dr. Travis Longcore, Dr. Rachel Meyer, and Dr. Sabrina Drill for their 
insights in landscape ecology used in this project.

Authors’ contributions  All authors contribution to the original draft, 
as well as subsequent edits. Conceptualization of this project was per-
formed by Ariel Levi Simons. Methodology was performed by Ariel 
Levi Simons, Jose Gallegos, and Michael Gatheru. Software develop-
ment was performed by Ariel Levi Simons, Laura Riccardelli, and Jose 
Gallegos. Validation was performed by Valeria Viera. Data curation 
was performed by Michelle Fu. Supervision was performed by Stevie 
Caldwell. Visualization was performed by Nhi Truong.

Funding  Not applicable.

Data Availability  All map layers used in this analysis are available 
at https://doi.org/10.5068/D1W988. All species observations were 
obtained from https://www.gbif.org .

Code Availability  All scripts used in this analysis are available here: 
https://github.com/LASanitation/LASAN.

Declarations

Conflicts of interest/Competing interests  Not applicable.

water, or air sample inventories, we can complement exist-
ing species monitoring efforts through the identification of 
thousands of species at once, including plants, animals, and 
microbes (Stat et al. 2019; Lin et al. 2021; Nørgaard et al. 
2021). Use of eDNA can greatly complement traditional 
species monitoring by enabling greater taxonomic resolu-
tion (Deiner et al. 2017; Ruppert et al. 2019), the detection of 
species which tend to avoid the presence of humans (Yone-
zawa et al. 2020; Mas-Carrió et al. 2021), or organisms such 
as bacteria and fungi which can be difficult to monitor using 
traditional observations (Frøslev et al. 2019; Liddicoat et al. 
2022). Comparisons of eDNA with observational methods 
have also indicated their potential to help capture additional 
elements of ecologically relevant information, such as the 
functional diversity of various groups of species (Aglieri et 
al., 2021; Donald et al. 2021; Sigsgaard et al. 2021), particu-
larly with regards to identifying ecological indicators (Yan 
et al. 2018; Blattner et al. 2021; Seymour et al. 2021).

With the recent developments in routine low-cost hyper-
spectral imaging there is the potential to overcome a num-
ber of these limitations in being able to acquire frequent, 
and high resolution, environmental data to improve models 
of urban biodiversity (Mozgeris et al. 2018; Zhang et al. 
2020; Hartling et al. 2021). Such remotely sensed environ-
mental data may be captured using cubesats (Kimm et al. 
2020; Grøtte et al. 2021), small and low-cost satellites, as 
well as airborne drones (Räsänen et al. 2020; Dierssen et al. 
2021). Of particular use to monitoring highly dynamic and 
heterogeneous urban environments, such data can be col-
lected at resolutions under 3 m in scale (Salgado-Hernanz et 
al. 2021) and daily in time (Rhodes et al. 2022).

Underlying many SDMs there is the assumption that the 
likely geographic distribution of species is purely a function 
of the environmental gradients present. While environmen-
tal variations may be an important driver in the geographic 
distribution of species, a variety of ecological factors rang-
ing from interspecies competition to dispersal will also have 
some degree of influence (Soberón 2007). One potential 
method for inferring the components of variation in SDMs 
which may be attributed to interspecies interactions, or 
unknown environmental factors, is the use of joint-SDMs 
(jSDMs) (Pollock et al. 2014). Although, as with our study, 
there is still a large degree of uncertainty in disentangling 
the contributions to variations in SDMs with a large number 
of potentially interacting species (Zurell et al. 2018).

Conclusions

As a predominantly urban species there is a need for humans 
to better understand the ecology, and condition, of their 
most common habitat. This presents particular difficulties 
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