A Supply Chain Risk Analysis of Cobalt Used in Electric Vehicle Batteries in the US

UCLA Grand Challenges

Sustainable LA

By Nashed Daniel*1, Rajagopal Deepak*2

*1 Department of Mechanical Engineering, University of California, Los Angeles, *2 Institute of the Environment and Sustainability, University of California, Los Angeles

Background

- Electric vehicles (EVs) can potentially lower carbon emissions and mitigate the effects of climate change
- · Cobalt is used in the cathodes of batteries in EVs because it improves the energy density of batteries, increasing driving range

• Cobalt is also used extensively in other industries, mainly as a super metal alloy, including defense and

- Ceramics/Pigments 2015 Global **Cobalt Demand** 93,950 tonnes Hard Metals Superalloys
- Supply chain of cobalt is risky due to the metal's **price** instability, limited and concentrated supply, and its unethical mine sourcing
- Over 50% of cobalt is mined in the politically unstable Congo and 46% is refined in China
- Price jumped by 275% from \$34,000/tonne in 2010 to an all-time high of \$93,538/tonne in March 2018
- Expected supply shortages can disrupt the growth of EVs market by increasing battery prices

Export

Barriers

Objectives

Economic

- Conduct a supply chain risk analysis of cobalt since it poses the greatest threat to EVs market growth in US
- Investigate domestic cobalt demand and supply till 2050 to determine cobalt demand-supply balances
- Assess how EVs market in the US will evolve in response to cobalt demand-supply balances

Market

Developments

Approach and Layout of the Study

Data has been collected from online reports, media, and conferences

Results: Global Distribution of Resources and Production

Global distribution of cobalt resources and mine and refined cobalt production in 2018.

- Congo dominates the mine cobalt production market at 90,000 tonnes annual production rate
- China dominates the refined cobalt production market at 45,046 tonnes annual production rate

Results: demand-supply balances

- Forecasted average cobalt demand-supply balances in US till 2035.
- Surplus of supply up to 2022 where supply and demand balance out at around 20,000 tonnes
- Supply deficit grows exponentially to 15,126 tonnes by 2025 and 86,717 tonnes by 2030
- Best case scenario: first shortage in 2026 if demand for cobalt follows low case for EV sales, all EVs use NCA battery chemistry, and supply follows high case
- Worst case scenario: first shortage in 2021 if demand for cobalt follows high case for EV sales, all EVs use NMC battery chemistry, and supply follows low case

Conclusion

- By end of 2022, demand and supply balance out at **20,000 tonnes**
- Future supply deficits can cause increase in battery prices and slow down EV market growth
- Without substantial EV domination, transportation sector will remain a large contributor to CO2 emissions
- 8.81 2025

High Case Low Case

- Domestic EV market share is 1.4% of LDVs in 2018
- By 2030, EV market share rises to 24.9% under low case and 27.1% under high case

Suggestions

- Increase R&D funding to speed up development of NMC 811 chemistries and solid state batteries
- Fuel cell cars are more efficient than EVs and require no cobalt, but not yet affordable and eco-friendly
- Potential **substitutes** for cobalt superalloy in aerospace industry include metal & ceramic matrix composites
- Provide **subsidies** to increase cobalt **recycling** rates
- Encourage investments in feasibility and development projects to mine for cobalt in oceans

Acknowledgments

This research was part of the Sustainable LA Grand Challenges, Undergraduate Research Scholars Program, and was supported by the UCLA Vice Chancellor for Research.