Balancing Data Sufficiency and Privacy

Medha Uppala
umedha@ucla.edu
February 11, 2019
Energy Atlas data resolution
Census tracts in LA county
Energy Atlas: Largest disaggregated energy use data in the nation

High resolution data has not been leveraged to solve policy goals by Utilities.

Most account information has not been linked to parcels

Collected data is not used to measure energy efficiency savings.
1. Data Ownership and Privacy – ownership could determine onus of securing privacy. Law making lags but privacy preserving methodology does not need to.

2. Data Transparency

3. Data Resolution – can we answer the same questions with less data?
Motivation

- Tackle the main issues by posing specific questions that leverage high resolution data
- California Senate Bill 350:
 1. Increase renewable portfolio standards of utility companies from 33% to 50% by 2030
 2. Increase California buildings’ efficiency by 50% by 2030
- Aid SB-350’s second goal by fitting a quantile regression model to identify contextual outliers
- This provides actionable targets for energy efficiency retrofit programs, etc.
The conditional quantile function for the monthly energy use of a megaparcel y_{ij} is:

$$Q_{y_{ij}}(\tau | x_{ij}) = \alpha_i + x_{ij}^\top \beta(\tau) + u_{ij},$$

(1)

where

- y_{ij}: energy usage of the ith megaparcel in the jth month,
- x_{ij}: vectors of covariates on the megaparcel,
- α_i: unobservable individual effect introduced by the m megaparcel,
- u_{ij}: month specific errors.
Penalized Fixed Effects Quantile regression

As the number of megaparcel m is much larger than the number of months j, a penalized version of quantile regression is fit and the objective function to be solved is:

$$\min_{(\alpha, \beta)} \sum_{k=1}^{q} \sum_{j=1}^{n_i} \sum_{i=1}^{m} w_k \rho_{\tau_k}(y_{ij} - \alpha_i - x_{ij}^\top \beta(\tau)) + \lambda \sum_{i=1}^{m} |\alpha_i|.$$

(2)

where

$\tau_k \in \{\tau_1, \ldots, \tau_q\}$: quantiles

$\rho_{\tau}(u)$: piecewise linear quantile loss function,

w_k: weights that control the relative influence of each of the q quantiles

λ: penalty on the megaparcel fixed effect.
Results

• At the 10% quantile, compared to commercial buildings, Residential Other (single-parcel, 1950s) buildings are the largest energy consumers. Identified as the UCLA Fraternity and Sorority houses on Gayley and Hilgard Avenues.

• Aside a few cases, commercial buildings are consistently the larger consumers at different quantiles. All commercial buildings are single parcel and built over multiple years. Possibly due to building heating and cooling?

• In Westwood, usetype Other is the largest consumer at the 90% quantile. These megaparcel include the LA Country Club and the UCLA housing on Weyburn.
The range between safeguarding privacy while maintaining data utility is pretty wide.

Level of necessary data utility is different for researchers vs. general public.

It is an interesting statistical problem to explore and test the balance of utility and privacy of existing methods.

Apply differential privacy and synthetic data methods on Energy Atlas, produce masked or synthetic data and re-fit quantile regression models to test utility of the new data.

This exercise will help set up guidelines on balancing utility and privacy.