Titles and Authors of Summit Oral Presentations and Abstracts

1. C. Scott Baker1,2, J. Jackson1, C. Olavarria1,3, E. L. Carroll1, and N. J. Patenaude1,4. How few whales were there after whaling? 1School of Biological Sciences, University of Auckland, New Zealand; 2current address: Hatfield Marine Science Center, Oregon State University, USA; 3current address: Instituto Antartico Chileno, Chile; 4current address: Massey University, New Zealand.

2. Spencer C.H. Barrett1, Robert I. Colautti1, and Christopher G. Eckert2. The evolution of adaptation during plant invasion. 1Department of Ecology and Evolutionary Biology, University of Toronto, Canada; 2Department of Biology, Queen's University, Canada.

3. Craig W. Benkman1, Adam M. Siepielski1, and Thomas L. Parchman2. Species introductions, the loss of geographic variation and the elimination of coevolutionary diversification. 1Department of Zoology and Physiology, University of Wyoming, Laramie, USA; 2Department of Biology, New Mexico State University, USA.

4. Louis Bernatchez. The functional genomics of rapid evolutionary changes between domesticated and wild populations. Département de biologie, Université Laval, Québec, Canada.

5. William E. Bradshaw and Christina M. Holzapfel. Genetic response to rapid climate change. Center for Ecology and Evolutionary Biology, University of Oregon, USA.

6. Ryan Brodick. Implications of research findings for fish and wildlife management. California Department of Fish and Game, USA.

7. Scott P. Carroll. Predicting the forms and foundations of rapid adaptation in persisting populations. Center for Population Biology and Department of Entomology, University of California, Davis, USA.

9. Troy Day1 and Andrew Read2. Modern poultry practices and the evolution of pathogen virulence. 1Department of Mathematics and Statistics, Department of Biology, Queen’s University, Canada; 2School of Biological Sciences, University of Edinburgh, United Kingdom.

10. Scott V. Edwards. Host-parasite interactions: Evolutionary genetics and gene expression changes in House Finches induced by an expanding bacterial pathogen. Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, USA.

12. Richard Frankham. Genetic adaptation to captivity in species conservation programs. Key Centre for Biodiversity and Bioresources, Department of Biological Sciences, Macquarie University, Australia.

13. Dany Garant¹, Loeske E. B. Kruuk², Robin H. McCleery³, and Ben C. Sheldon³. Changing climate and changing genetic (co)variance of reproductive traits in a wild bird population. ¹Département de Biologie, Université de Sherbrooke, Canada; ²Institute of Evolutionary Biology, University of Edinburgh, United Kingdom; ³Edward Grey Institute, Department of Zoology, University of Oxford, United Kingdom.

15. Delphine Grivet¹, Victoria L. Sork¹, Robert D. Westfall², and Frank W. Davis³. Do landscape changes threaten regions of evolutionary interest in California valley oak (Quercus lobata)? ¹Department of Ecology and Evolutionary Biology and Institute of the Environment, University of California, Los Angeles, USA; ²Sierra Nevada Research Center, U.S. Department of Agriculture Forest Service, Pacific Southwest Research Station, USA; ³Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, USA.

16. Phil W. Hedrick¹, R. Fredrickson¹, and L. Waits². Captive breeding and the recovery of Mexican and red wolves. ¹Department of Biology, Arizona State University, USA; ²Fish and Wildlife Resources, University of Idaho, USA.

17. Jessica J. Hellmann, Shannon L. Pelini, Kirsten M. Prior, and Evgueni V. Zakharov. Local adaptation as potential constraint on geographic range shifts under climate change: molecular evidence of divergence and field tests of population fitness in two contrasting butterfly species. Department of Biological Sciences, University of Notre Dame, USA.

18. Andrew P. Hendry¹, T. Farrugia¹, and Michael T. Kinnison². Human impacts on rates of phenotypic change in wild animal populations. ¹Department of Biology, McGill University, Canada; ²Department of Biological Sciences, University of Maine, USA.
19. Jeffrey A. Hutchings and Dylan J. Fraser. **Fishing, farming, and their evolutionary consequences to fishes.** Department of Biology, Dalhousie University, Canada.

20. Michael T. Kinnison¹, Martin J. Unwin², and Thomas P. Quinn³. **Rapid evolution as an ecological determinant of invasion: experimental evaluation in the wild.** ¹Department of Biological Sciences, University of Maine, USA; ²National Institute of Water and Atmosphere, New Zealand; and ³School of Fisheries and Aquatic Sciences, University of Washington, USA.

21. Scott P. Layne. **Influenza surveillance: The demand to expand.** Department of Epidemiology, School of Public Health, University of California, Los Angeles, USA.

22. Camille Lebarbenchon¹,², Robert Poulin³, Michel Gauthier-Clerc², and Frédéric Thomas¹. **Human activities and parasite microevolution.** ¹Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, IRD, France; ²Station Biologique de la Tour du Valat, Le Sambuc, France; ³Department of Zoology, University of Otago, New Zealand.

23. Paul Leberg¹ and Brigette Firmin². **Purging of inbreeding depression and the management of captive populations.** ¹Department of Biology, University of Louisiana, Lafayette, USA; ²US Fish & Wildlife Service, USA.

24. Carol Eunmi Lee. **Exploring genomic targets of selection across independent invasions into novel environments.** Department of Zoology, University of Wisconsin, USA.

25. Georgina M. Mace and Andy Purvis. **Evolutionary biology and practical conservation: bridging a widening gap.** Institute of Zoology, Zoological Society of London, and Department of Biological Sciences, Imperial College London, Silwood Park, United Kingdom.

26. Robert D. Mangold¹ and Deborah L. Rogers²,³. **Federal policy on forest invasive species and its relationship to evolutionary biology research.** ¹Forest Health Protection, United States National Forest Service, USA; ²Genetic Resources Conservation Program, University of California, Davis, USA; ³Center for Natural Lands Management, USA.

27. Juha Merilä and Phillip Gienapp. **Environmental change and evolution: Disentangling environmental and genetic responses.** Ecological Genetics Research Unit, Department of Biological and Environmental Sciences, University of Helsinki, Finland.
28. Craig Moritz, Edward Davis, Nathan Kraft, Michelle Koo, and David Ackerly. Predicting and protecting evolutionary hotspots in California. Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, USA.

29. Mary Nichols. Translating science into policy. Institute of the Environment and School of Law, University of California, Los Angeles, USA.

30. Ingrid M. Parker and Katrina M. Dlugosch. Founding events in invasions: genetic patterns and evolutionary consequences. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA.

31. Oliver R. W. Pergams¹ and Robert C. Lacy². Microevolution in Chicago-area mice. ¹University of Illinois at Chicago, USA; ²Chicago Zoological Society, USA.

32. Ettore Randi. Detecting hybridisation between wild species and their domesticated relatives. Istituto Nazionale per la Fauna Selvatica, Italy.

33. Mark Reynolds¹,², Gretchen LeBuhn², and Rebecca Shaw¹. Is ignoring evolution intelligent design for conservation? ¹The Nature Conservancy, California Field Office, USA; ²Department of Biology, San Francisco State University, USA.

34. David Reznick¹ and Cameron Ghalambor². Experimental studies of evolution in guppies – a model for understanding the role of predators in structuring natural communities. ¹Department of Biology, University of California, Riverside, USA; ²Department of Biology, Colorado State University, USA.

35. Loren H. Rieseberg¹, Ken Whitney², and Nolan Kane³. The speed of adaptation. ¹Botany Department, University of British Columbia, Canada; ²Department of Ecology and Evolutionary Biology, Rice University, USA; ³Biology Department, Indiana University, USA.

37. Pierre Saumitou-Laprade. Adaptation of Arabidopsis halleri (Brassicaceae) to sites recently polluted by high amounts of zinc and cadmium. Laboratoire de Genetique et Evolution des Populations Vegetales, Unite Mixte de Recherches, Centre National de la Recherche Scientifique (UMR CNRS 8016, FR CNRS 1818), Universite des Sciences et Technologies de Lille – Lille 1, France.
38. Ole Seehausen. Speciation reversal in human-altered environments. Department of Aquatic Ecology and Evolution, Institute of Zoology, University of Bern, Switzerland; EAWAG Ecology Research Centre, Switzerland.

40. Thomas Smith1,2, Greg Grether2, Irem Sepil1, Hans Slabbekoorn3, Wolfgang Buermann1, Sassan Saatchi1,4, Borja Milá1,2, and John Pollinger1,2. Microevolutionary consequences of human disturbance in a rainforest species from Central Africa. 1Center for Tropical Research, Institute of the Environment, University of California, Los Angeles, USA; 2Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA; 3Behavioral Biology, Institute of Biology Leiden, the Netherlands; 4NASA/Jet Propulsion Laboratory, USA.

41. Andrew V. Suarez1 and Neil D. Tsutsui2. The evolutionary consequences of social insect invasions. 1Department of Animal Biology and Department of Entomology, University of Illinois, USA; 2Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Irvine, USA.

43. Marcel E. Visser. Climate change leads to selection on temperature sensitivity of avian timing of reproduction. Netherlands Institute of Ecology (NIOO-KNAW), The Netherlands.

44. Robin S. Waples. Evolutionary consequences of anthropogenic changes on long-term viability of Pacific salmon and steelhead. Northwest Fisheries Science Center, USA.

45. Robert Wayne1, Bridgett von Holdt1, Jennifer Leonard2, and Douglas Smith3. The effect of extirpation and reintroduction on genetic variability of the gray wolf. 1Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA; 2Department of Evolutionary Biology, Uppsala University, Sweden; 3Yellowstone National Park, USA.

46. Kenneth D. Whitney1, Rebecca A. Randell2, and Loren H. Rieseberg3. Hybridization as a route to invasion. 1Department of Ecology and Evolutionary Biology, Rice University, USA; 2Department of Biology, Indiana University, USA; 3Botany Department, University of British Columbia, Canada.